Reactions of atom and atom group transfer

Author(s):  
A. M. Kuznetsov
Keyword(s):  
ChemInform ◽  
2013 ◽  
Vol 44 (19) ◽  
pp. no-no
Author(s):  
Joshua V. Ruppel ◽  
Kimberly B. Fields ◽  
Nicole L. Snyder ◽  
X. Peter Zhang

Author(s):  
Joshua V. Ruppel ◽  
Kimberly B. Fields ◽  
Nicole L. Snyder ◽  
X. Peter Zhang

ChemInform ◽  
2012 ◽  
Vol 43 (50) ◽  
pp. no-no
Author(s):  
Toby Wai-Shan Chow ◽  
Guo-Qiang Chen ◽  
Yungen Liu ◽  
Cong-Ying Zhou ◽  
Chi-Ming Che

2001 ◽  
Vol 40 (20) ◽  
pp. 5062-5063 ◽  
Author(s):  
My Hang V. Huynh ◽  
Donald L. Jameson ◽  
Thomas J. Meyer

2012 ◽  
Vol 84 (8) ◽  
pp. 1685-1704 ◽  
Author(s):  
Toby Wai-Shan Chow ◽  
Guo-Qiang Chen ◽  
Yungen Liu ◽  
Cong-Ying Zhou ◽  
Chi-Ming Che

Iron-catalyzed reactions are receiving a surge of interest owing to the natural abundance and biocompatibility of Fe and the urge to develop practically useful sustainable catalysis for fine chemical industries. This article is a brief account of our studies on the C–O and C–N bond formation reactions catalyzed by Fe complexes supported by oligopyridine, macrocyclic tetraaza, and fluorinated porphyrin ligands. The working principle is the in situ generation of reactive Fe=O and Fe=NR intermediates supported by these oxidatively robust N-donor ligands for oxygen atom/nitrogen group transfer and insertion reactions. The catalytic reactions include C–H bond oxidation of saturated hydrocarbons (up to 87 % yield), epoxidation of alkenes (up to 96 % yield), cis-dihydroxylation of alkenes (up to 99 % yield), epoxidation–isomerization (E–I) reaction of aryl alkenes (up to 94 % yield), amination of C–H bonds (up to 95 % yield), aziridination of alkenes (up to 95 % yield), sulfimidation of sulfides (up to 96 % yield), and amide formation from aldehydes (up to 89 % yield). Many of these catalytic reactions feature high regio- and diastereoselectivity and/or high product yields and substrate conversions, and recyclability of the catalyst, demonstrating the applicability of Fe-catalyzed oxidative organic transformation reactions in practical organic synthesis.


Sign in / Sign up

Export Citation Format

Share Document