Impact of wind energy based DG placement on congested electrical network under deregulated competitive power market

Author(s):  
A. Agrawal ◽  
L. Srivastava ◽  
S.N. Pandey
2021 ◽  
Author(s):  
Manuel Eising ◽  
Hannes Hobbie ◽  
Dominik Möst

<p><strong>Keywords</strong>: Market value, Technological diversification, Geographical diversification, Spatial value factor distribution</p><p>Ambitious climate and energy targets require environmentally compatible energy generation with a high utilisation of renewable energy sources. However, due to the intermittent appearance of wind and PV feed-in, variable renewable energy (VRE) reveals significantly lower market values than conventional dispatchable power (Joskow, 2011). Additionally, with higher VRE shares a significant market value drop of wind and solar power has been observed in recent years as a result of the merit order effect (Hirth, 2013). Moreover, results by Engelhorn and Müsgens (2018) and Becker and Thrän (2018) have indicated regional disparities in empirical market values for Germany.  This poses interest on what exactly drives and how to quantify the development and spatial distribution of VRE market values.</p><p>Against this background, an electricity market model is applied to trace the development of spatial market values based on model-endogenous electricity prices. A special feature of the model is the inclusion of highly regionally disaggregated weather data which allows to investigate effects of different geographical and technological VRE diversification strategies in Germany until 2035 (Eising et al., 2020). The results of this research are threefold:</p><ul><li>Technological diversity: results show a significant decrease in PV and onshore wind value factors as VRE shares increase. Replacing onshore wind energy by offshore wind energy reduces the volatility and counteracts the value drop of onshore wind, offshore wind and PV.</li> <li>Geographical diversity: results indicate that geographical diversification does not necessarily mitigate decreasing VRE value factors. Under specific circumstances, a higher concentration at sites with lower full-load hours and corresponding higher feed-in volatility potentially mitigates positive effects from more spatially distributed generation.</li> <li>Spatial distribution of value factors: for all mitigation strategies and for wind and PV the spatial value factor distribution shows future increases in regional disparities. However, regional value factor disparities are most distinct in case of onshore wind. The analysis reveals two significant drivers: first, a negative relationship between the regional wind capacity density and their regional value factors can be observed. Second, results indicate a negative relationship between site-specific wind feed-in volatility and the value factor.</li> </ul><p> Summarising, the analysis highlights the importance of considering spatial market values in efficiently designing future electricity markets.  </p><p> </p><p><strong>References</strong></p><p>Becker, R., Thrän, D., 2018. Optimal Siting of Wind Farms in Wind Energy Dominated Power Systems. Energies 11, 978. https://doi.org/10.3390/en11040978</p><p>Eising, M., Hobbie, H., Möst, D., 2020. Future wind and solar power market values in Germany — Evidence of spatial and technological dependencies? Energy Econ. 86, 104638. https://doi.org/10.1016/j.eneco.2019.104638</p><p>Engelhorn, T., Müsgens, F., 2018. How to estimate wind-turbine infeed with incomplete stock data: A general framework with an application to turbine-specific market values in Germany. Energy Econ. 72, 542–557. https://doi.org/10.1016/j.eneco.2018.04.022</p><p>Hirth, L., 2013. The market value of variable renewables: The effect of solar wind power variability on their relative price. Energy Econ. 38, 218–236.</p><p>Joskow, P.L., 2011. Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies. Am. Econ. Rev. 101, 238–241.</p>


2018 ◽  
Vol 7 (4.10) ◽  
pp. 963
Author(s):  
M. B.Hemanth Kumar ◽  
B. Saravanan

Stability of power systems is an important aspect for interconnecting different renewable energy sources into the existing electrical network. The concern over environmental effects due to conventional power plant made the researchers to implement many solutions for introducing renewable energy due to their intermittent nature. When the wind energy conversion system is introduced into the grid there’s need of voltage and frequency control for maintaining reactive power demand and also many issues from the consumer end and also it must satisfy the grid standards. As the wind is dynamic in nature there are issues like stability, load imbalance, power quality and other issues. In this paper, a non-linear feedback controller is introduced based on field-oriented control (FOC) approach and simulated in MATLAB environment. The designed controller is tested for wind data for examining the stability and power coefficient for the wind turbine. This controller also achieves fast transient response for rapid changes in the wind profile.  


1996 ◽  
Vol 21 (1) ◽  
pp. 347-370 ◽  
Author(s):  
Susan M. Schoenung ◽  
James M. Eyer ◽  
Joseph J. Iannucci ◽  
Susan A. Horgan

2018 ◽  
Vol 70 ◽  
pp. 01017 ◽  
Author(s):  
Izabela Wielewska ◽  
Karol Tucki ◽  
Anna Bączyk ◽  
Magda Trzaska

The aim of the paper was to analyse the wind power market in Poland by reviewing the factors that shape and influence its current state and the possible development prospects. The paper was focused on legislative, environmental, manufacturing, sociocultural and economic factors. Barriers to the development of onshore wind power market and the expected development of wind energy in Poland in the years 2017-2020 were identified and measured based on a survey. The review of individual factors and the study performed present that legislative barriers and the introduction of the ‘distance act’ are factors with the biggest influence on the current stagnation of onshore wind energy sector. A review of the recommendations concerning the distance (from protected areas and housing) required to build wind farms set forth in literature shows that Poland is the only country with such harsh restrictions. With its good environmental conditions and technical capacities, Poland can become a European leader in the production of energy from wind. The only barrier is the legislative environment and political instability on the national level. Without improvements in this sector, there is no chance for new wind projects, as these factors are crucial for development of this type of energy.


2004 ◽  
Vol 79 (2) ◽  
pp. 127-144 ◽  
Author(s):  
J.K Kaldellis ◽  
K.A Kavadias ◽  
A.E Filios ◽  
S Garofallakis

Sign in / Sign up

Export Citation Format

Share Document