UNDIRECTED GRAPHS / HERMITIAN MATRICES

2014 ◽  
Vol 458 ◽  
pp. 403-428 ◽  
Author(s):  
Zhao Chen ◽  
Matthew Grimm ◽  
Paul McMichael ◽  
Charles R. Johnson

Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Liyan Chen ◽  
Samuel Cheng ◽  
Kanghang He ◽  
Vladimir Stankovic ◽  
Lina Stankovic
Keyword(s):  

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Andreas Blommaert ◽  
Thomas G. Mertens ◽  
Henri Verschelde

Abstract It was proven recently that JT gravity can be defined as an ensemble of L × L Hermitian matrices. We point out that the eigenvalues of the matrix correspond in JT gravity to FZZT-type boundaries on which spacetimes can end. We then investigate an ensemble of matrices with 1 ≪ N ≪ L eigenvalues held fixed. This corresponds to a version of JT gravity which includes N FZZT type boundaries in the path integral contour and which is found to emulate a discrete quantum chaotic system. In particular this version of JT gravity can capture the behavior of finite-volume holographic correlators at late times, including erratic oscillations.


1977 ◽  
Vol 65 (4) ◽  
pp. 562-570 ◽  
Author(s):  
G.S. Bloom ◽  
S.W. Golomb
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document