scholarly journals Taming Computational Complexity: Efficient and Parallel SimRank Optimizations on Undirected Graphs

Author(s):  
Weiren Yu ◽  
Xuemin Lin ◽  
Jiajin Le
2020 ◽  
Vol 34 (02) ◽  
pp. 1758-1765
Author(s):  
Aishwarya Agarwal ◽  
Edith Elkind ◽  
Jiarui Gan ◽  
Alexandros Voudouris

We study a recently introduced class of strategic games that is motivated by and generalizes Schelling's well-known residential segregation model. These games are played on undirected graphs, with the set of agents partitioned into multiple types; each agent either occupies a node of the graph and never moves away or aims to maximize the fraction of her neighbors who are of her own type. We consider a variant of this model that we call swap Schelling games, where the number of agents is equal to the number of nodes of the graph, and agents may swap positions with other agents to increase their utility. We study the existence, computational complexity and quality of equilibrium assignments in these games, both from a social welfare perspective and from a diversity perspective.


Author(s):  
Nico Potyka

Bipolar abstract argumentation frameworks allow modeling decision problems by defining pro and contra arguments and their relationships. In some popular bipolar frameworks, there is an inherent tendency to favor either attack or support relationships. However, for some applications, it seems sensible to treat attack and support equally. Roughly speaking, turning an attack edge into a support edge, should just invert its meaning. We look at a recently introduced bipolar argumentation semantics and two novel alternatives and discuss their semantical and computational properties. Interestingly, the two novel semantics correspond to stable semantics if no support relations are present and maintain the computational complexity of stable semantics in general bipolar frameworks.


Author(s):  
Nguyen N. Tran ◽  
Ha X. Nguyen

A capacity analysis for generally correlated wireless multi-hop multi-input multi-output (MIMO) channels is presented in this paper. The channel at each hop is spatially correlated, the source symbols are mutually correlated, and the additive Gaussian noises are colored. First, by invoking Karush-Kuhn-Tucker condition for the optimality of convex programming, we derive the optimal source symbol covariance for the maximum mutual information between the channel input and the channel output when having the full knowledge of channel at the transmitter. Secondly, we formulate the average mutual information maximization problem when having only the channel statistics at the transmitter. Since this problem is almost impossible to be solved analytically, the numerical interior-point-method is employed to obtain the optimal solution. Furthermore, to reduce the computational complexity, an asymptotic closed-form solution is derived by maximizing an upper bound of the objective function. Simulation results show that the average mutual information obtained by the asymptotic design is very closed to that obtained by the optimal design, while saving a huge computational complexity.


2009 ◽  
Vol 20 (9) ◽  
pp. 2344-2351 ◽  
Author(s):  
He JIANG ◽  
Yan HU ◽  
Qiang LI ◽  
Hong YU

Sign in / Sign up

Export Citation Format

Share Document