- Unsteady Flow and Heat Transfer Theory

2016 ◽  
pp. 28-51
Author(s):  
X. Liu ◽  
W. Rodi

A detailed experimental study has been conducted on the wake-induced unsteady flow and heat transfer in a linear turbine cascade. The unsteady wakes with passing frequencies in the range zero to 240 Hz were generated by moving cylinders on a squirrel cage device. The velocity fields in the blade-to-blade flow and in the boundary layers were measured with hot-wire anemometers, the surface pressures with a pressure transducer and the heat transfer coefficients with a glue-on hot film. The results were obtained in ensemble-averaged form so that periodic unsteady processes can be studied. Of particular interest was the transition of the boundary layer. The boundary layer remained laminar on the pressure side in all cases and in the case without wakes also on the suction side. On the latter, the wakes generated by the moving cylinders caused transition, and the beginning of transition moves forward as the cylinder-passing frequency increases. Unlike in the flat-plate study of Liu and Rodi (1991a) the instantaneous boundary layer state does not respond to the passing wakes and therefore does not vary with time. The heat transfer increases under increasing cylinder-passing frequency even in the regions with laminar boundary layers due to the increased background turbulence.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2257-2262
Author(s):  
Jie Yu Du ◽  
Jiang Xie ◽  
Yu Qi Zhao ◽  
Li Peng Zhang ◽  
Rui Bin Zhu

The hot flushing is a major means of removing wax. For low pressure reservoir, it is possible to produce a large number of washing fluid flowing into the formation, which affects the well production recovery. The application of hollow sucker rod hot flushing technology can avoid fluid pouring back into the formation, and the wells can keep production. Based on the principle of hollow sucker rod hot flushing and heat transfer theory, calculation model of temperature field was established, and hollow sucker rod hot flushing simulation system was developed, which can guide flushing in oilfield.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012165
Author(s):  
V S Berdnikov ◽  
V A Vinokurov ◽  
V V Vinokurov

Abstract The evolution of the flow structure and heat transfer with an increase in the characteristic temperature drop in the ranges of Grashof and Marangoni numbers 3558 ≤ Gr ≤ 7116 and 2970 ≤ Ma ≤ 5939 are investigated numerically. The boundary of the transition to unsteady flow and heat transfer regimes has been determined.


Sign in / Sign up

Export Citation Format

Share Document