BK-CONWIP Adaptive Control Strategies in a Multi-Product Manufacturing System

2017 ◽  
pp. 45-62
Author(s):  
Paolo Renna
2015 ◽  
Vol 2 ◽  
pp. 137-149 ◽  
Author(s):  
Chukwunonyelum Emmanuel Onyeocha ◽  
Jiayi Wang ◽  
Joseph Khoury ◽  
John Geraghty

2021 ◽  
Vol 16 (4) ◽  
pp. 473-484
Author(s):  
A.S. Xanthopoulos ◽  
D.E. Koulouriotis

Pull production control strategies coordinate manufacturing operations based on actual demand. Up to now, relevant publications mostly examine manufacturing systems that produce a single type of a product. In this research, we examine the CONWIP, Base Stock, and CONWIP/Kanban Hybrid pull strategies in multi-product manufacturing systems. In a multi-product manufacturing system, several types of products are manufactured by utilizing the same resources. We develop queueing network models of multi-stage, multi-product manufacturing systems operating under the three aforementioned pull control strategies. Simulation models of the alternative production systems are implemented using an open-source software. A comparative evaluation of CONWIP, Base Stock and CONWIP/Kanban Hybrid in multi-product manufacturing is carried out in a series of simulation experiments with varying demand arrival rates, setup times and control parameters. The control strategies are compared based on average wait time of backordered demand, average finished products inventories, and average length of backorders queues. The Base Stock strategy excels when the manufacturing system is subjected to high demand arrival rates. The CONWIP strategy produced consistently the highest level of finished goods inventories. The CONWIP/Kanban Hybrid strategy is significantly affected by the workload that is imposed on the system.


Author(s):  
I.L. Chien ◽  
D.A. Mellichamp ◽  
D.E. Seborg

AIChE Journal ◽  
1986 ◽  
Vol 32 (6) ◽  
pp. 881-913 ◽  
Author(s):  
D. E. Seborg ◽  
T. F. Edgar ◽  
S. L. Shah

2017 ◽  
Vol 24 (24) ◽  
pp. 5854-5866 ◽  
Author(s):  
Amin Hosseini ◽  
Touraj Taghikhany ◽  
Arash Yeganeh Fallah

In recent decades, the application of semi-active control strategies has gained much attention as a way to reduce the seismic response of civil infrastructures. However, uncertainty in the modeling process of systems with possible partial or total failure during an earthquake is the main concern of engineers about the reliability of this strategy. In this regard, adaptive control algorithms are known as an effective solution to adjust control parameters with different uncertainties. In the current study, the efficiency of the simple adaptive control method (SACM) is investigated to control the seismic response of building structures in the presence of unknown structural damage and fault in the sensors. The method is evaluated in 20-story steel moment resisting frames with different arrangement of smart dampers and sensors with various damage and fault scenarios. The results show that the SACM control system can effectively reduce the maximum inter-story drift of the structure in all different assumed magnetorheological damper arrangements. Furthermore, combination of a Kalman–Bucy filter with the SACM improves robustness of the controller to the uncertainties of sensors faults and damages of structural elements.


Author(s):  
F. Bonetti ◽  
C. McInnes

A low-order 3-box energy balance model for the climate system is employed with a multivariable control scheme for the evaluation of new robust and adaptive climate engineering strategies using solar radiation management. The climate engineering measures are deployed in three boxes thus representing northern, southern and central bands. It is shown that, through heat transport between the boxes, it is possible to effect a degree of latitudinal control through the reduction of insolation. The approach employed consists of a closed-loop system with an adaptive controller, where the required control intervention is estimated under the RCP 4.5 radiative scenario. Through the online estimation of the controller parameters, adaptive control can overcome key issues related to uncertainties of the climate model, the external radiative forcing and the dynamics of the actuator used. In fact, the use of adaptive control offers a robust means of dealing with unforeseeable abrupt perturbations, as well as the parametrization of the model considered, to counteract the RCP 4.5 scenario, while still providing bounds on stability and control performance. Moreover, applying multivariable control theory also allows the formal controllability and observability of the system to be investigated in order to identify all feasible control strategies.


Sign in / Sign up

Export Citation Format

Share Document