radiative forcing
Recently Published Documents


TOTAL DOCUMENTS

4114
(FIVE YEARS 1137)

H-INDEX

145
(FIVE YEARS 16)

2022 ◽  
Author(s):  
Junjun Deng ◽  
Hao Ma ◽  
Xinfeng Wang ◽  
Shujun Zhong ◽  
Zhimin Zhang ◽  
...  

Abstract. Brown carbon (BrC) aerosols exert vital impacts on climate change and atmospheric photochemistry due to their light absorption in the wavelength range from near-ultraviolet (UV) to visible light. However, the optical properties and formation mechanisms of ambient BrC remain poorly understood, limiting the estimation of their radiative forcing. In the present study, fine aerosols (PM2.5) were collected during 2016–2017 on a day/night basis over urban Tianjin, a megacity in North China, to obtain seasonal and diurnal patterns of atmospheric water-soluble BrC. There were obvious seasonal but no evident diurnal variations in light absorption properties of BrC. In winter, BrC showed much stronger light absorbing ability since mass absorption efficiency at 365 nm (MAE365) (1.54 ± 0.33 m2 g−1), which was 1.8 times larger than that (0.84 ± 0.22 m2 g−1) in summer. Direct radiative effects by BrC absorption relative to black carbon in the UV range were 54.3 ± 16.9 % and 44.6 ± 13.9 %, respectively. In addition, five fluorescent components in BrC, including three humic-like fluorophores and two protein-like fluorophores were identified with excitation-emission matrix fluorescence spectrometry and parallel factor (PARAFAC) analysis. The lowly-oxygenated components contributed more to winter and nighttime samples, while more-oxygenated components increased in summer and daytime samples. The higher humification index (HIX) together with lower biological index (BIX) and fluorescence index (FI) suggest that the chemical compositions of BrC were associated with a high aromaticity degree in summer and daytime due to photobleaching. Fluorescent properties indicate that wintertime BrC were predominantly affected by primary emissions and fresh secondary organic aerosol (SOA), while summer ones were more influenced by aging processes. Results of source apportionments using organic molecular compositions of the same set of aerosols reveal that fossil fuel combustion and aging processes, primary bioaerosol emission, biomass burning, and biogenic and anthropogenic SOA formation were the main sources of BrC. Biomass burning contributed much larger to BrC in winter and at nighttime, while biogenic SOA contributed more in summer and at daytime. Especially, our study highlights that primary bioaerosol emission is an important source of BrC in urban Tianjin in summer.


2022 ◽  
Vol 14 (2) ◽  
pp. 959
Author(s):  
Yanjiao Zheng ◽  
Lijuan Zhang ◽  
Wenliang Li ◽  
Fan Zhang ◽  
Xinyue Zhong

The amount of black carbon (BC) on snow surface can significantly reduce snow surface albedo in the visible-light range and change the surface radiative forcing effect. Therefore, it is key to study regional and global climate changes to understand the BC concentration on snow. In this study, we simulated the BC concentration on the surface snow of northeast China using an asymptotic radiative transfer model. From 2001 to 2016, the BC concentration showed no significant increase, with an average increase of 82.104 ng/g compared with that in the early 21st century. The concentration of BC in December was the largest (1344.588 ng/g) and decreased in January and February (1248.619 ng/g and 983.635 ng/g, respectively). The high black carbon content centers were concentrated in the eastern and central regions with dense populations and concentrated industries, with a concentration above 1200 ng/g, while the BC concentration in the southwest region with less human activities was the lowest (below 850 ng/g), which indicates that human activities played an important role in snow BC pollution. Notably, Heilongjiang province has the highest concentration, which may be related to its atmospheric stability in winter. These findings suggest that the BC pollution in northeast China has been aggravated from 2001 to 2016. It is estimated that the snow surface albedo will decrease by 16.448% due to the BC pollution of snow in northeast China. The problem of radiative forcing caused by black carbon to snow reflectivity cannot be ignored.


2022 ◽  
Vol 22 (1) ◽  
pp. 561-575
Author(s):  
Jiaxing Sun ◽  
Zhe Wang ◽  
Wei Zhou ◽  
Conghui Xie ◽  
Cheng Wu ◽  
...  

Abstract. Atmospheric aerosols play an important role in the radiation balance of the earth–atmosphere system. However, our knowledge of the long-term changes in equivalent black carbon (eBC) and aerosol optical properties in China is very limited. Here we analyze the 9-year measurements of eBC and aerosol optical properties from 2012 to 2020 in Beijing, China. Our results showed large reductions in eBC by 71 % from 6.25 ± 5.73 µg m−3 in 2012 to 1.80 ± 1.54 µg m−3 in 2020 and 47 % decreases in the light extinction coefficient (bext, λ = 630 nm) of fine particles due to the Clean Air Action Plan that was implemented in 2013. The seasonal and diurnal variations of eBC illustrated the most significant reductions in the fall and at nighttime, respectively. ΔeBC / ΔCO also showed an annual decrease from ∼ 7 to 4 ng m−3 ppbv−1 and presented strong seasonal variations with high values in spring and fall, indicating that primary emissions in Beijing have changed significantly. As a response to the Clean Air Action Plan, single-scattering albedo (SSA) showed a considerable increase from 0.79 ± 0.11 to 0.88 ± 0.06, and mass extinction efficiency (MEE) increased from 3.2 to 3.8 m2 g−1. These results highlight the increasing importance of scattering aerosols in radiative forcing and a future challenge in visibility improvement due to enhanced MEE. Brown carbon (BrC) showed similar changes and seasonal variations to eBC during 2018–2020. However, we found a large increase of secondary BrC in the total BrC in most seasons, particularly in summer with the contribution up to 50 %, demonstrating an enhanced role of secondary formation in BrC in recent years. The long-term changes in eBC and BrC have also affected the radiative forcing effect. The direct radiative forcing (ΔFR) of BC decreased by 67 % from +3.36 W m−2 in 2012 to +1.09 W m−2 in 2020, and that of BrC decreased from +0.30 to +0.17 W m−2 during 2018–2020. Such changes might have important implications for affecting aerosol–boundary layer interactions and the improvement of future air quality.


2022 ◽  
pp. 1-44

Abstract Atlantic Multidecadal Variability (AMV) impacts temperature, precipitation, and extreme events on both sides of the Atlantic basin. Previous studies with climate models have suggested that when external radiative forcing is held constant, the large-scale ocean and atmosphere circulation are associated with sea-surface temperature anomalies that have similar characteristics to the observed AMV. However, there is an active debate as to whether these internal fluctuations driven by coupled atmosphere-ocean variability remain influential to the AMV on multidecadal timescales in our modern, anthropogenically-forced climate. Here we provide evidence from multiple large ensembles of climate models, paleo reconstructions, and instrumental observations of a growing role for external forcing in the AMV. Prior to 1850, external forcing, primarily from volcanoes, explains about one third of AMV variance. Between 1850 and 1950, there is a transitional period, where external forcing explains half of AMV variance, but volcanic forcing only accounts for about 10% of that. After 1950, external forcing explains three quarters of AMV variance. That is, the role for external forcing in the AMV grows as the variations in external forcing grow, even if the forcing is from different sources. When forcing is relatively stable, as in earlier modeling studies, a higher percentage of AMV variations are internally generated.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Juan Pablo Corella ◽  
Niccolo Maffezzoli ◽  
Andrea Spolaor ◽  
Paul Vallelonga ◽  
Carlos A. Cuevas ◽  
...  

AbstractIodine has a significant impact on promoting the formation of new ultrafine aerosol particles and accelerating tropospheric ozone loss, thereby affecting radiative forcing and climate. Therefore, understanding the long-term natural evolution of iodine, and its coupling with climate variability, is key to adequately assess its effect on climate on centennial to millennial timescales. Here, using two Greenland ice cores (NEEM and RECAP), we report the Arctic iodine variability during the last 127,000 years. We find the highest and lowest iodine levels recorded during interglacial and glacial periods, respectively, modulated by ocean bioproductivity and sea ice dynamics. Our sub-decadal resolution measurements reveal that high frequency iodine emission variability occurred in pace with Dansgaard/Oeschger events, highlighting the rapid Arctic ocean-ice-atmosphere iodine exchange response to abrupt climate changes. Finally, we discuss if iodine levels during past warmer-than-present climate phases can serve as analogues of future scenarios under an expected ice-free Arctic Ocean. We argue that the combination of natural biogenic ocean iodine release (boosted by ongoing Arctic warming and sea ice retreat) and anthropogenic ozone-induced iodine emissions may lead to a near future scenario with the highest iodine levels of the last 127,000 years.


2022 ◽  
Author(s):  
Hailing Jia ◽  
Johannes Quaas ◽  
Edward Gryspeerdt ◽  
Christoph Böhm ◽  
Odran Sourdeval

Abstract. Aerosol–cloud interaction is the most uncertain component of the overall anthropogenic forcing of the climate, in which the Twomey effect plays a fundamental role. Satellite-based estimates of the Twomey effect are especially challenging, mainly due to the difficulty in disentangling aerosol effects on cloud droplet number concentration (Nd) from possible confounders. By combining multiple satellite observations and reanalysis, this study investigates the impacts of a) updraft, b) precipitation, c) retrieval errors, as well as (d) vertical co-location between aerosol and cloud, on the assessment of Nd-toaerosol sensitivity (S) in the context of marine warm (liquid) clouds. Our analysis suggests that S increases remarkably with both cloud base height and cloud geometric thickness (proxies for vertical velocity at cloud base), consistent with stronger aerosol-cloud interactions at larger updraft velocity. In turn, introducing the confounding effect of aerosol–precipitation interaction can artificially amplify S by an estimated 21 %, highlighting the necessity of removing precipitating clouds from analyses on the Twomey effect. It is noted that the retrieval biases in aerosol and cloud appear to underestimate S, in which cloud fraction acts as a key modulator, making it practically difficult to balance the accuracies of aerosol–cloud retrievals at aggregate scales (e.g., 1° × 1° grid). Moreover, we show that using column-integrated sulfate mass concentration (SO4C) to approximate sulfate concentration at cloud base (SO4B) can result in a degradation of correlation with Nd, along with a nearly twofold enhancement of S, mostly attributed to the inability of SO4C to capture the full spatio-temporal variability of SO4B. These findings point to several potential ways forward to account for the major influential factors practically by means of satellite observations and reanalysis, aiming at an optimal observational estimate of global radiative forcing due to the Twomey effect.


2022 ◽  
Author(s):  
Kai Zhang ◽  
Wentao Zhang ◽  
Hui Wan ◽  
Philip J. Rasch ◽  
Steven J. Ghan ◽  
...  

Abstract. The effective radiative forcing of anthropogenic aerosols (ERFaer) is an important measure of the anthropogenic aerosol effects simulated by a global climate model. Here we analyze ERFaer simulated by the E3SMv1 atmosphere model using both century-long free-running atmosphere-land simulations and short nudged simulations. We relate the simulated ERFaer to characteristics of the aerosol composition and optical properties, and evaluate the relationships between key aerosol and cloud properties. In terms of historical changes from the year 1870 to 2014, our results show that the global mean anthropogenic aerosol burden and optical depth increase during the simulation period as expected, but the regional averages show large differences in the temporal evolution. The largest regional differences are found in the emission-induced evolution of the burden and optical depth of the sulfate aerosol: a strong decreasing trend is seen in the Northern Hemisphere high-latitude region after around 1970, while a continued increase is simulated in the tropics. Consequently, although the global mean anthropogenic aerosol burden and optical depth increase from 1870 to 2014, the ERFaer magnitude does not increase after around year 1970. The relationships between key aerosol and cloud properties (relative changes between preindustrial and present-day conditions) also show evident changes after 1970, diverging from the linear relationships exhibited for the period from 1870 to 2014. The ERFaer in E3SMv1 is relatively large compared to the recently published multi-model estimates; the primary reason is the large indirect aerosol effect (i.e., through aerosol-cloud interactions). Compared to other models, E3SMv1 features a stronger sensitivity of the cloud droplet effective radius to changes in the cloud droplet number concentration. Large sensitivity is also seen in the liquid cloud optical depth, which is determined by changes in both the effective radius and liquid water path. Aerosol-induced changes in liquid and ice cloud properties in E3SMv1 are found to have a strong correlation, as the evolution of anthropogenic sulfate aerosols affects both the liquid cloud formation and the homogeneous ice nucleation in cirrus clouds. The ERFaer estimates in E3SMv1 for the shortwave and longwave components are sensitive to the parameterization changes in both liquid and ice cloud processes. When the parameterization of ice cloud processes is modified, the top-of-atmosphere forcing changes in the shortwave and longwave components largely offset each other, so the net effect is negligible. This suggests that, to reduce the magnitude of the net ERFaer, it would be more effective to reduce the anthropogenic aerosol effect through liquid or mixed-phase clouds.


2022 ◽  
Author(s):  
Richard Massey ◽  
Brendan Rogers ◽  
Logan Berner ◽  
Sol Cooperdock ◽  
Michelle Mack ◽  
...  

Abstract Deciduous tree cover is expected to increase in North American boreal forests with climate warming and wildfire occurrence. This shift in composition can generate biophysical cooling effects via increased land surface albedo. Here we use newly derived maps of continuous tree canopy and fractional deciduous cover to assess change over recent decades. We find on average a small net decrease in deciduous fraction cover from 2000 to 2015 across boreal North America, and from 1992 to 2015 across Canada, despite extensive fire disturbance that locally increased deciduous vegetation. We further find a near-neutral net biophysical change in radiative forcing across the domain due to relatively small net changes in albedo. Thus, while there have been widespread changes in forest composition over the past several decades across the domain, the net changes in composition and associated post-fire radiative forcing have not yet induced systematic negative feedbacks to climate warming.


2022 ◽  
pp. 1-60

Abstract The processes controlling idealized warming and cooling patterns are examined in 150 year-long fully coupled Community Earth System Model version 1 (CESM1) experiments under abrupt CO2 forcing. By simulation end, 2xCO2 global warming was 20% larger than 0.5xCO2 global cooling. Not only was the absolute global effective radiative forcing ∼10% larger for 2xCO2 than for 0.5xCO2, global feedbacks were also less negative for 2xCO2 than for 0.5xCO2. Specifically, more positive shortwave cloud feedbacks led to more 2xCO2 global warming than 0.5xCO2 global cooling. Over high latitude oceans, differences between 2xCO2 warming and 0.5xCO2 cooling were amplified by familiar linked positive surface albedo and lapse rate feedbacks associated with sea ice change. At low latitudes, 2xCO2 warming exceeded 0.5xCO2 cooling almost everywhere. Tropical Pacific cloud feedbacks amplified: 1) more fast warming than fast cooling in the west, 2) slow pattern differences between 2xCO2 warming and 0.5xCO2 cooling in the east. Motivated to quantify cloud influence, a companion suite of experiments were run without cloud radiative feedbacks. Disabling cloud radiative feedbacks reduced the effective radiative forcing and surface temperature responses for both 2xCO2 and 0.5xCO2. Notably, 20% more global warming than global cooling occurred regardless of whether cloud feedbacks were enabled or disabled. This surprising consistency resulted from the cloud influence on non-cloud feedbacks and circulation. With the exception of the Tropical Pacific, disabling cloud feedbacks did little to change surface temperature response patterns including the large high-latitude responses driven by non-cloud feedbacks. The findings provide new insights into the regional processes controlling the response to greenhouse gas forcing, especially for clouds.


Sign in / Sign up

Export Citation Format

Share Document