building structures
Recently Published Documents


TOTAL DOCUMENTS

2955
(FIVE YEARS 1077)

H-INDEX

46
(FIVE YEARS 11)

Author(s):  
Kamale G ◽  
Satheeshkumar K R P

Soil-structure interaction(SSI) analysis is the study of the dynamic response of a structure as influenced by the interaction with the surrounding soil. The SSI response is sensitive to the characteristics of the soil, structures, and ground motion, as well as the depth of embedment. The concept of soil-structure interaction was introduced , and the research methods were discussed. This report presents a synthetic of the body of knowledge contained in SSI literature, which has been distilled into a concise narrative and harmonized under a consistent set of variables and units. Specific techniques are described by which SSI phenomena can be simulated in engineering practice, and recommendations for modeling seismic soil-structure interaction effects on building structures are provided. An attempt was made to summarize the all terms in this area of study.


2022 ◽  
Vol 14 (2) ◽  
pp. 845
Author(s):  
Aman Kumar ◽  
Harish Chandra Arora ◽  
Krishna Kumar ◽  
Mazin Abed Mohammed ◽  
Arnab Majumdar ◽  
...  

Fibre-reinforced cement mortar (FRCM) has been widely utilised for the repair and restoration of building structures. The bond strength between FRCM and concrete typically takes precedence over the mechanical parameters. However, the bond behaviour of the FRCM–concrete interface is complex. Due to several failure modes, the prediction of bond strength is difficult to forecast. In this paper, effective machine learning models were employed in order to accurately predict the FRCM–concrete bond strength. This article employed a database of 382 test results available in the literature on single-lap and double-lap shear experiments on FRCM–concrete interfacial bonding. The compressive strength of concrete, width of concrete block, FRCM elastic modulus, thickness of textile layer, textile width, textile bond length, and bond strength of FRCM–concrete interface have been taken into consideration with popular machine learning models. The paper estimates the predictive accuracy of different machine learning models for estimating the FRCM–concrete bond strength and found that the GPR model has the highest accuracy with an R-value of 0.9336 for interfacial bond strength prediction. This study can be utilising in the estimation of bond strength to minimise the experimentation cost in minimum time.


Author(s):  
Raghu Pradeep Narayanan ◽  
Leeza Abraham

Abstreact: DNA nanotechnology marvels the scientific world with its capabilities to design, engineer, and demonstrate nanoscale shapes. This review is a condensed version walking the reader through the structural developments in the field over the past 40 years starting from the basic design rules of the double-stranded building block to the most recent advancements in self-assembled hierarchically achieved structures to date. It builds off from the fundamental motivation of building 3-dimensional (3D) lattice structures of tunable cavities going all the way up to artificial nanorobots fighting cancer. The review starts by covering the most important developments from the fundamental bottom-up approach of building structures, which is the ‘tile’ based approach covering 1D, 2D, and 3D building blocks, after which, the top-down approach using DNA origami and DNA bricks is also covered. Thereafter, DNA nanostructures assembled using not so commonly used (yet promising) techniques like i-motifs, quadruplexes, and kissing loops are covered. Highlights from the field of dynamic DNA nanostructures have been covered as well, walking the reader through the various approaches used within the field to achieve movement. The article finally concludes by giving the authors a view of what the future of the field might look like while suggesting in parallel new directions that fellow/future DNA nanotechnologists could think about.


Author(s):  
Cecilia I. Nievas ◽  
Marco Pilz ◽  
Karsten Prehn ◽  
Danijel Schorlemmer ◽  
Graeme Weatherill ◽  
...  

AbstractThe creation of building exposure models for seismic risk assessment is frequently challenging due to the lack of availability of detailed information on building structures. Different strategies have been developed in recent years to overcome this, including the use of census data, remote sensing imagery and volunteered graphic information (VGI). This paper presents the development of a building-by-building exposure model based exclusively on openly available datasets, including both VGI and census statistics, which are defined at different levels of spatial resolution and for different moments in time. The initial model stemming purely from building-level data is enriched with statistics aggregated at the neighbourhood and city level by means of a Monte Carlo simulation that enables the generation of full realisations of damage estimates when using the exposure model in the context of an earthquake scenario calculation. Though applicable to any other region of interest where analogous datasets are available, the workflow and approach followed are explained by focusing on the case of the German city of Cologne, for which a scenario earthquake is defined and the potential damage is calculated. The resulting exposure model and damage estimates are presented, and it is shown that the latter are broadly consistent with damage data from the 1978 Albstadt earthquake, notwithstanding the differences in the scenario. Through this real-world application we demonstrate the potential of VGI and open data to be used for exposure modelling for natural risk assessment, when combined with suitable knowledge on building fragility and accounting for the inherent uncertainties.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Chenglong Xu ◽  
Zhi Liu

Increasing fire-induced bridge failures are demanding more precise behavior prediction for the bridges subjected to fires. However, current numerical methods are limited to temperature curves prescribed for building structures, which can misestimate the fire impact significantly. This paper developed a framework coupling the computational dynamics (CFD) method and finite element method (FEM) to predict the performance of fire-exposed bridges. The fire combustion was simulated in CFD software, Fire Dynamic Simulator, to calculate the thermal boundary required by the thermomechanical simulation. Then, the adiabatic surface temperatures and heat transfer coefficient were applied to the FEM model of the entire bridge girder. A sequential coupled thermomechanical FEM simulation was then carried out to evaluate the performance of the fire-exposed bridge, thermally and structurally. The methodology was then validated through a real fire experiment on a steel beam. The fire performance of a simply supported steel box bridge was simulated using the proposed coupled CFD-FEM methodology. Numerical results show that the presented method was able to replicate the inhomogeneous thermomechanical response of box bridges exposed to real fires. The girder failed due to the buckling of a central diaphragm after the ignition of the investigated tanker fire in no more than 10 min. The framework presented in this study is programmatic and friendly to researchers and can be applied for the estimation of bridges in different fire conditions.


2022 ◽  
Vol 21 (4) ◽  
pp. 376-383
Author(s):  
S. G. Glushko ◽  
A. A. Lyapin ◽  
Yu. Yu. Shatilov ◽  
A. V. Cherpakov ◽  
R. K. Haldkar

Introduction. Truss structures are widespread in construction due to a number of advantages, such as economy, versatility, and scalability. Accordingly, their modeling and calculation are urgent tasks in the design of building structures. Automatic solution to these problems causes an increase in design efficiency, calculation accuracy, and lower costs. The objective of the study is to examine the functionality and operation algorithm of the software module developed by the authors that generates the geometry of two-dimensional truss structures for subsequent modeling.Materials and Methods. Following the research of the widespread truss configurations, the classification of chords available in the software under consideration is given. The method of parameterizing a truss structure is provided. This method includes base geometric parameters of the structure such as dimensions, model construction rules, and additional features, as well as a comprehensive algorithm. The software is developed in JavaScript.Results. The software module has been integrated into a web application for calculating two-dimensional rod structures. To illustrate the functionality of the software, the examples of user interface are given as well as an example problem. The example includes configuration and calculation of an inclined truss structure. The results, such as support reactions and internal forces with axial force diagram, are provided.Discussion and Conclusions. Using this software module within the framework of the tool for calculating rod structures allows for the simplified process of modeling and calculating complex truss structures, design time, and resource reduction. The software module provides tools for specifying various types of structures, applying loads and assigning properties of a rod system, which makes it a useful instrument for design engineers.


2022 ◽  
Vol 4 (6) ◽  
pp. 26-47
Author(s):  
S. Zhuykov

Russia has a developed industry of building materials, which today implements an energy- and resource-saving model of its development. The implementation of the state policy of resource conservation is carried out in two main directions: the first direction is to save resources in the production of materials, the second is to increase the production of energy–efficient materials that allow saving energy carriers during their operation. Modern construc-tion in Russia is guided by European construction standards, which, in turn, provides for the construction of ener-gy-saving buildings with minimal energy consumption from external sources. This is ensured by the use of struc-tural and thermal insulation materials in the construction of external walls. In modern structural and thermal insu-lation materials for energy-saving construction, high requirements are imposed on their thermal properties, me-chanical strength and comfort level. From the point of view of simultaneous satisfaction of these requirements, ceramic materials have obvious advantages over other materials, in particular cellular concretes, which, with al-most the same level of thermal conductivity, are characterized by the least hygroscopicity and significantly greater strength. An objective prospect for the development of structural and thermal insulation ceramics is the production of hollow ceramic stones with increased thermal efficiency for their use in economical single-layer external wall structures without additional insulation. The products of individual Ukrainian manufacturers and even imported analogues of the most famous European manufacturer (Wiernerberger Company, Austria), when used in single-layer walls, do not provide regulatory requirements for the heat transfer resistance of masonry for the first temper-ature zone of Russia, which occupies the majority of the territory (60%). This requires the improvement of domes-tic products in the direction of improving their thermal characteristics (reducing thermal conductivity and increas-ing thermal resistance).


Sign in / Sign up

Export Citation Format

Share Document