scholarly journals Influence of Age and 17β-Estradiol on Kisspeptin, Neurokinin B, and Prodynorphin Gene Expression in the Arcuate-Median Eminence of Female Rhesus Macaques

Endocrinology ◽  
2010 ◽  
Vol 151 (8) ◽  
pp. 3783-3794 ◽  
Author(s):  
Dominique H. Eghlidi ◽  
Gwendolen E. Haley ◽  
Nigel C. Noriega ◽  
Steven G. Kohama ◽  
Henryk F. Urbanski

The neuropeptides kisspeptin, neurokinin B, and dynorphin A (collectively abbreviated as KNDy) are, respectively, encoded by KiSS-1, NKB, and PDYN and are coexpressed by neurons of the hypothalamic arcuate nucleus (ARC). Here, using quantitative real-time PCR, we examined age-related changes in the expression of genes encoding KNDy and associated receptors G protein-coupled receptor 54 (encoded by GPR54), neurokinin 3 receptor (encoded by NK3), and κ-opioid receptor (encoded by KOR), in the female rhesus macaque ARC-median eminence (ARC-ME). Expression of KiSS-1 and NKB was highly elevated in old perimenopausal compared with young or middle-aged premenopausal animals. To test whether these age-related changes could be attributed to perimenopausal loss of sex steroids, we then examined KNDy, GPR54, NK3, and KOR expression changes in response to ovariectomy (OVX) and exposure to 17β-estradiol (E2). Short-term (7 months) OVX (with or without 1 month of estrogen replacement) failed to modulate the expression of any of the KNDy-related genes. In contrast, long-term (∼4 yr) OVX significantly increased KiSS-1 and NKB expression, and this was reversed by E2 administration. Finally, we examined the expression of KNDy-related genes in young adult females during the early follicular, late follicular, or midluteal phases of their menstrual cycle but found no difference. Together, the results suggest that short-term alterations in circulating E2 levels, such as those occurring during the menstrual cycle, may have little effect on the ARC-ME expression of KNDy and associated receptors. Nevertheless, they clearly demonstrate that loss of ovarian steroid negative feedback that occurs during perimenopause plays a major role in modulating the activity of KNDy circuits of the aging primate ARC-ME.

2021 ◽  
Author(s):  
Kira Lin ◽  
Tu Tran ◽  
Soohyun Kim ◽  
Sangwan Park ◽  
Jiajia Chen ◽  
...  

Purpose: To assess age-related changes in the rhesus macaque eye and evaluate them to corresponding human age-related eye disease. Methods: Data from eye exams and imaging tests including intraocular pressure (IOP), lens thickness, axial length, and retinal optical coherence tomography (OCT) images were evaluated from 142 individuals and statistically analyzed for age-related changes. Quantitative autofluorescence (qAF) was measured as was the presence of macular lesions as related to age. Results: Ages of the 142 rhesus macaques ranged from 0.7 to 29 years (mean=16.4 years, stdev=7.5 years). Anterior segment measurements such as IOP, lens thickness, and axial length were acquired. Advanced retinal imaging in the form of optical coherence tomography and qAF were obtained. Quantitative assessments were made and variations by age groups were analyzed to compare with established age-related changes in human eyes. Quantitative analysis of data revealed age-related increase in intraocular pressure, ocular biometry (lens thickness and axial length), and presence of macular lesions. Age-related changes in thicknesses of retinal layers on OCT were observed and quantified. Age was correlated with increased qAF. Conclusions: The rhesus macaque has age-related ocular changes similar to humans. IOP increases with age while retinal ganglion cell layer thickness decreases. Macular lesions develop in some aged animals. Our findings support the concept that rhesus macaques may be useful for the study of important age-related diseases such as glaucoma, macular diseases, and cone disorders, and for development of therapies for these diseases.


2017 ◽  
Vol 55 ◽  
pp. 172-174 ◽  
Author(s):  
Henryk F. Urbanski ◽  
Krystina G. Sorwell ◽  
Laszlo Prokai ◽  
Steven G. Kohama

2008 ◽  
Vol 122 (2) ◽  
pp. 301-309 ◽  
Author(s):  
Michael R. Foy ◽  
Michel Baudry ◽  
Judith G. Foy ◽  
Richard F. Thompson

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Dibyadeep Datta ◽  
Shannon N. Leslie ◽  
Yury M. Morozov ◽  
Alvaro Duque ◽  
Pasko Rakic ◽  
...  

Abstract Background Cognitive impairment in schizophrenia, aging, and Alzheimer’s disease is associated with spine and synapse loss from the dorsolateral prefrontal cortex (dlPFC) layer III. Complement cascade signaling is critical in driving spine loss and disease pathogenesis. Complement signaling is initiated by C1q, which tags synapses for elimination. C1q is thought to be expressed predominately by microglia, but its expression in primate dlPFC has never been examined. The current study assayed C1q levels in aging primate dlPFC and rat medial PFC (mPFC) and used immunoelectron microscopy (immunoEM), immunoblotting, and co-immunoprecipitation (co-IP) to reveal the precise anatomical distribution and interactions of C1q. Methods Age-related changes in C1q levels in rhesus macaque dlPFC and rat mPFC were examined using immunoblotting. High-spatial resolution immunoEM was used to interrogate the subcellular localization of C1q in aged macaque layer III dlPFC and aged rat layer III mPFC. co-IP techniques quantified protein-protein interactions for C1q and proteins associated with excitatory and inhibitory synapses in macaque dlPFC. Results C1q levels were markedly increased in the aged macaque dlPFC. Ultrastructural localization found the expected C1q localization in glia, including those ensheathing synapses, but also revealed extensive localization within neurons. C1q was found near synapses, within terminals and in spines, but was also observed in dendrites, often near abnormal mitochondria. Similar analyses in aging rat mPFC corroborated the findings in rhesus macaques. C1q protein increasingly associated with PSD95 with age in macaque, consistent with its synaptic localization as evidenced by EM. Conclusions These findings reveal novel, intra-neuronal distribution patterns for C1q in the aging primate cortex, including evidence of C1q in dendrites. They suggest that age-related changes in the dlPFC may increase C1q expression and synaptic tagging for glial phagocytosis, a possible mechanism for age-related degeneration.


2021 ◽  
Vol 12 (1) ◽  
pp. 97
Author(s):  
Gagan Bajaj ◽  
DasmineFraclita D'Souza ◽  
VinithaMary George ◽  
Sudhin Karuppali ◽  
JayashreeS Bhat

2004 ◽  
Vol 37 (2) ◽  
pp. 129-138 ◽  
Author(s):  
Hiromi Ike ◽  
Yoshitaka Tamada ◽  
Mamoru Uemura ◽  
Akihiko Ishihara ◽  
Fumihiko Suwa ◽  
...  

1997 ◽  
Vol 28 ◽  
pp. S269
Author(s):  
Yoshitaka Tamada ◽  
Seiji Hayashi ◽  
Norio Iijima ◽  
Hiromi Ike ◽  
Masaki Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document