scholarly journals A Particular Case of Correlation Inequality for the Gaussian Measure

1999 ◽  
Vol 27 (4) ◽  
pp. 1939-1951 ◽  
Author(s):  
Gilles Hargé
1999 ◽  
Vol 68 (2) ◽  
pp. 193-211 ◽  
Author(s):  
Stanislaw J. Szarek ◽  
Elisabeth Werner

1989 ◽  
Vol 50 (2) ◽  
pp. 305-307 ◽  
Author(s):  
Ravi Boppona ◽  
Joel Spencer

Author(s):  
Alberto Criado

In a recent article Aldaz proved that the weak L1 bounds for the centred maximal operator associated to finite radial measures cannot be taken independently with respect to the dimension. We show that the same result holds for the Lp bounds of such measures with decreasing densities, at least for small p near to one. We also give some concrete examples, including the Gaussian measure, where better estimates with respect to the general case are obtained.


2001 ◽  
Vol 33 (4) ◽  
pp. 408-416 ◽  
Author(s):  
F. BARTHE

The paper studies an isoperimetric problem for the Gaussian measure and coordinatewise symmetric sets. The notion of boundary measure corresponding to the uniform enlargement is considered, and it is proved that symmetric strips or their complements have minimal boundary measure.


1983 ◽  
Vol 11 (3) ◽  
pp. 685-691 ◽  
Author(s):  
T. Byczkowski ◽  
A. Hulanicki

10.37236/6019 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Péter Csikvári ◽  
Zhicong Lin

Let $\hom(H,G)$ denote the number of homomorphisms from a graph $H$ to a graph $G$. Sidorenko's conjecture asserts that for any bipartite graph $H$, and a graph $G$ we have$$\hom(H,G)\geq v(G)^{v(H)}\left(\frac{\hom(K_2,G)}{v(G)^2}\right)^{e(H)},$$where $v(H),v(G)$ and $e(H),e(G)$ denote the number of vertices and edges of the graph $H$ and $G$, respectively. In this paper we prove Sidorenko's conjecture for certain special graphs $G$: for the complete graph $K_q$ on $q$ vertices, for a $K_2$ with a loop added at one of the end vertices, and for a path on $3$ vertices with a loop added at each vertex. These cases correspond to counting colorings, independent sets and Widom-Rowlinson colorings of a graph $H$. For instance, for a bipartite graph $H$ the number of $q$-colorings $\mathrm{ch}(H,q)$ satisfies$$\mathrm{ch}(H,q)\geq q^{v(H)}\left(\frac{q-1}{q}\right)^{e(H)}.$$In fact, we will prove that in the last two cases (independent sets and Widom-Rowlinson colorings) the graph $H$ does not need to be bipartite. In all cases, we first prove a certain correlation inequality which implies Sidorenko's conjecture in a stronger form.


Sign in / Sign up

Export Citation Format

Share Document