scholarly journals On the heat kernel and the Dirichlet form of Liouville Brownian motion

2014 ◽  
Vol 19 (0) ◽  
Author(s):  
Rémi Rhodes ◽  
Christophe Garban ◽  
Vincent Vargas
1999 ◽  
Vol 51 (4) ◽  
pp. 673-744 ◽  
Author(s):  
Martin T. Barlow ◽  
Richard F. Bass

AbstractWe consider a class of fractal subsets of d formed in a manner analogous to the construction of the Sierpinski carpet. We prove a uniform Harnack inequality for positive harmonic functions; study the heat equation, and obtain upper and lower bounds on the heat kernel which are, up to constants, the best possible; construct a locally isotropic diffusion X and determine its basic properties; and extend some classical Sobolev and Poincaré inequalities to this setting.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Claire Canner ◽  
Christopher Hayes ◽  
Robin Huang ◽  
Michael Orwin ◽  
Luke G. Rogers

Abstract The 4 ⁢ N {4N} -carpets are a class of infinitely ramified self-similar fractals with a large group of symmetries. For a 4 ⁢ N {4N} -carpet F, let { F n } n ≥ 0 {\{F_{n}\}_{n\geq 0}} be the natural decreasing sequence of compact pre-fractal approximations with ⋂ n F n = F {\bigcap_{n}F_{n}=F} . On each F n {F_{n}} , let ℰ ⁢ ( u , v ) = ∫ F N ∇ ⁡ u ⋅ ∇ ⁡ v ⁢ d ⁢ x {\mathcal{E}(u,v)=\int_{F_{N}}\nabla u\cdot\nabla v\,dx} be the classical Dirichlet form and u n {u_{n}} be the unique harmonic function on F n {F_{n}} satisfying a mixed boundary value problem corresponding to assigning a constant potential between two specific subsets of the boundary. Using a method introduced by [M. T. Barlow and R. F. Bass, On the resistance of the Sierpiński carpet, Proc. Roy. Soc. Lond. Ser. A 431 (1990), no. 1882, 345–360], we prove a resistance estimate of the following form: there is ρ = ρ ⁢ ( N ) > 1 {\rho=\rho(N)>1} such that ℰ ⁢ ( u n , u n ) ⁢ ρ n {\mathcal{E}(u_{n},u_{n})\rho^{n}} is bounded above and below by constants independent of n. Such estimates have implications for the existence and scaling properties of Brownian motion on F.


2018 ◽  
Vol 30 (5) ◽  
pp. 1129-1155 ◽  
Author(s):  
Jiaxin Hu ◽  
Xuliang Li

AbstractWe apply the Davies method to prove that for any regular Dirichlet form on a metric measure space, an off-diagonal stable-like upper bound of the heat kernel is equivalent to the conjunction of the on-diagonal upper bound, a cutoff inequality on any two concentric balls, and the jump kernel upper bound, for any walk dimension. If in addition the jump kernel vanishes, that is, if the Dirichlet form is strongly local, we obtain a sub-Gaussian upper bound. This gives a unified approach to obtaining heat kernel upper bounds for both the non-local and the local Dirichlet forms.


2021 ◽  
pp. 1-34
Author(s):  
G. Serafin

We establish short-time asymptotics with rates of convergence for the Laplace Dirichlet heat kernel in a ball. So far, such results were only known in simple cases where explicit formulae are available, i.e., for sets as half-line, interval and their products. Presented asymptotics may be considered as a complement or a generalization of the famous “principle of not feeling the boundary” in case of a ball. Following the metaphor, the principle reveals when the process does not feel the boundary, while we describe what happens when it starts feeling the boundary.


2012 ◽  
Vol 55 (2) ◽  
pp. 403-427 ◽  
Author(s):  
Florian Conrad ◽  
Martin Grothaus ◽  
Janna Lierl ◽  
Olaf Wittich

AbstractThe method of deriving scaling limits using Dirichlet-form techniques has already been successfully applied to a number of infinite-dimensional problems. However, extracting the key tools from these papers is a rather difficult task for non-experts. This paper meets the need for a simple presentation of the method by applying it to a basic example, namely the convergence of Brownian motions with potentials given by n multiplied by the Dirac delta at 0 to Brownian motion with absorption at 0.


Sign in / Sign up

Export Citation Format

Share Document