explicit formulae
Recently Published Documents


TOTAL DOCUMENTS

505
(FIVE YEARS 67)

H-INDEX

33
(FIVE YEARS 2)

2022 ◽  
Vol 55 (5) ◽  
pp. 053001
Author(s):  
E C Bailey ◽  
J P Keating

Abstract We review recent progress relating to the extreme value statistics of the characteristic polynomials of random matrices associated with the classical compact groups, and of the Riemann zeta-function and other L-functions, in the context of the general theory of logarithmically-correlated Gaussian fields. In particular, we focus on developments related to the conjectures of Fyodorov and Keating concerning the extreme value statistics, moments of moments, connections to Gaussian multiplicative chaos, and explicit formulae derived from the theory of symmetric functions.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 350
Author(s):  
Chan-Liang Chung ◽  
Chunmei Zhong ◽  
Kanglun Zhou

This article focuses on searching and classifying balancing numbers in a set of arithmetic progressions. The sufficient and necessary conditions for the existence of balancing numbers are presented. Moreover, explicit formulae of balancing numbers and various relations are included.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2197
Author(s):  
Zahid Raza ◽  
Muhammad Imran

The modified second Zagreb index, symmetric difference index, inverse symmetric index, and augmented Zagreb index are among the molecular descriptors which have good correlations with some physicochemical properties (such as formation heat, total surface area, etc.) of chemical compounds. By a random cyclooctane chain, we mean a molecular graph of a saturated hydrocarbon containing at least two rings such that all rings are cyclooctane, every ring is joint with at most two other rings through a single bond, and exactly two rings are joint with one other ring. In this article, our main purpose is to determine the expected values of the aforementioned molecular descriptors of random cyclooctane chains explicitly. We also make comparisons in the form of explicit formulae and numerical tables consisting of the expected values of the considered descriptors of random cyclooctane chains. Moreover, we outline the graphical profiles of these comparisons among the mentioned descriptors.


2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Ruimin Zhang ◽  
Xiaohui Liu ◽  
Chunjin Wei

In this paper, we study a classic mutualistic relationship between the leaf cutter ants and their fungus garden, establishing a time delay mutualistic system with stage structure. We investigate the stability and Hopf bifurcation by analyzing the distribution of the roots of the associated characteristic equation. By means of the center manifold theory and normal form method, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. Finally, some numerical simulations are carried out for illustrating the theoretical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shouliu Wei ◽  
Wai Chee Shiu ◽  
Xiaoling Ke ◽  
Jianwu Huang

Let G be a connected (molecule) graph. The Wiener index W G and Kirchhoff index K f G of G are defined as the sum of distances and the resistance distances between all unordered pairs of vertices in G , respectively. In this paper, explicit formulae for the expected values of the Wiener and Kirchhoff indices of random pentachains are derived by the difference equation and recursive method. Based on these formulae, we then make comparisons between the expected values of the Wiener index and the Kirchhoff index in random pentachains and present the average values of the Wiener and Kirchhoff indices with respect to the set of all random pentachains with n pentagons.


2021 ◽  
Vol 56 (1) ◽  
pp. 96-102
Author(s):  
M.S. Bratiichuk ◽  
A.A. Chechelnitsky ◽  
I.Ya. Usar

The article deals with M/M/1 -type retrial queueing system with finite orbit. It is supposedthat service rate depends on the loading of the system. The explicit formulae for ergodicdistribution of the number of customers in the system are obtained. The theoretical results areillustrated by numerical examples.


2021 ◽  
pp. 1-34
Author(s):  
G. Serafin

We establish short-time asymptotics with rates of convergence for the Laplace Dirichlet heat kernel in a ball. So far, such results were only known in simple cases where explicit formulae are available, i.e., for sets as half-line, interval and their products. Presented asymptotics may be considered as a complement or a generalization of the famous “principle of not feeling the boundary” in case of a ball. Following the metaphor, the principle reveals when the process does not feel the boundary, while we describe what happens when it starts feeling the boundary.


2021 ◽  
Vol 2068 (1) ◽  
pp. 012007
Author(s):  
Jishe Feng ◽  
Hongtao Fan

Abstract The pentadiagonal Toeplitz matrix is a special kind of sparse matrix widely used in linear algebra, combinatorics, computational mathematics, and has been attracted much attention. We use the determinants of two specific Hessenberg matrices to represent the recurrence relations to prove two explicit formulae to evaluate the determinants of specific pentadiagonal Toeplitz matrices proposed in a recent paper [3]. Further, four new results are established.


2021 ◽  
Vol 927 ◽  
Author(s):  
César Huete ◽  
Alexander L. Velikovich ◽  
Daniel Martínez-Ruiz ◽  
Andrés Calvo-Rivera

We present a theoretical stability analysis for an expanding accretion shock that does not involve a rarefaction wave behind it. The dispersion equation that determines the eigenvalues of the problem and the explicit formulae for the corresponding eigenfunction profiles are presented for an arbitrary equation of state and finite-strength shocks. For spherically and cylindrically expanding steady shock waves, we demonstrate the possibility of instability in a literal sense, a power-law growth of shock-front perturbations with time, in the range of $h_c< h<1+2 {\mathcal {M}}_2$ , where $h$ is the D'yakov-Kontorovich parameter, $h_c$ is its critical value corresponding to the onset of the instability and ${\mathcal {M}}_2$ is the downstream Mach number. Shock divergence is a stabilizing factor and, therefore, instability is found for high angular mode numbers. As the parameter $h$ increases from $h_c$ to $1+2 {\mathcal {M}}_2$ , the instability power index grows from zero to infinity. This result contrasts with the classic theory applicable to planar isolated shocks, which predicts spontaneous acoustic emission associated with constant-amplitude oscillations of the perturbed shock in the range $h_c< h<1+2 {\mathcal {M}}_2$ . Examples are given for three different equations of state: ideal gas, van der Waals gas and three-terms constitutive equation for simple metals.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1774
Author(s):  
Zheming Tong ◽  
Zezhao Peng ◽  
Yuqing Yue ◽  
Zhou Chen

SPH (smoothed particle hydrodynamics) is one of the oldest meshless methods used to simulate mechanics of continuum media. Despite its great advantage over the traditional grid-based method, implementing boundary conditions in SPH is not easy and the accuracy near the boundary is low. When SPH is applied to problems for elasticity, the displacement or stress boundary conditions should be suitably handled in order to achieve fast convergence and acceptable numerical accuracy. The GFDM (generalized finite difference method) can derive explicit formulae for required partial derivatives of field variables. Hence, a SPH–GFDM coupled method is developed to overcome the disadvantage in SPH. This coupled method is applied to 2-D elastic analysis in both symmetric and asymmetric computational domains. The accuracy of this method is demonstrated by the excellent agreement with the results obtained from FEM (finite element method) regardless of the symmetry of the computational domain. When the computational domain is multiply connected, this method needs to be further improved.


Sign in / Sign up

Export Citation Format

Share Document