scholarly journals On locally finite groups in which every element has prime power order

2002 ◽  
Vol 46 (3) ◽  
pp. 885-891 ◽  
Author(s):  
Alberto L. Delgado ◽  
Yu-Fen Wu
2005 ◽  
Vol 15 (03) ◽  
pp. 571-576 ◽  
Author(s):  
PAVEL SHUMYATSKY

Let G be a residually finite group satisfying some identity w ≡ 1. Suppose G is generated by a normal commutator-closed set X of p-elements. We prove that G is locally finite.


Author(s):  
Olivia Caramello

This chapter discusses several classical as well as new examples of theories of presheaf type from the perspective of the theory developed in the previous chapters. The known examples of theories of presheaf type that are revisited in the course of the chapter include the theory of intervals (classified by the topos of simplicial sets), the theory of linear orders, the theory of Diers fields, the theory of abstract circles (classified by the topos of cyclic sets) and the geometric theory of finite sets. The new examples include the theory of algebraic (or separable) extensions of a given field, the theory of locally finite groups, the theory of vector spaces with linear independence predicates and the theory of lattice-ordered abelian groups with strong unit.


1976 ◽  
Vol 43 (1) ◽  
pp. 168-175 ◽  
Author(s):  
Angus Macintyre ◽  
Saharon Shelah

2017 ◽  
Vol 20 (4) ◽  
Author(s):  
Anna Giordano Bruno ◽  
Pablo Spiga

AbstractWe study the growth of group endomorphisms, a generalization of the classical notion of growth of finitely generated groups, which is strictly related to algebraic entropy. We prove that the inner automorphisms of a group have the same growth type and the same algebraic entropy as the identity automorphism. Moreover, we show that endomorphisms of locally finite groups cannot have intermediate growth. We also find an example showing that the Addition Theorem for algebraic entropy does not hold for endomorphisms of arbitrary groups.


2011 ◽  
Vol 18 (04) ◽  
pp. 685-692
Author(s):  
Xuanli He ◽  
Shirong Li ◽  
Xiaochun Liu

Let G be a finite group, p the smallest prime dividing the order of G, and P a Sylow p-subgroup of G with the smallest generator number d. Consider a set [Formula: see text] of maximal subgroups of P such that [Formula: see text]. It is shown that if every member [Formula: see text] of is either S-quasinormally embedded or C-normal in G, then G is p-nilpotent. As its applications, some further results are obtained.


Author(s):  
Costantino Delizia ◽  
Chiara Nicotera

AbstractThe structure of locally soluble periodic groups in which every abelian subgroup is locally cyclic was described over 20 years ago. We complete the aforementioned characterization by dealing with the non-periodic case. We also describe the structure of locally finite groups in which all abelian subgroups are locally cyclic.


Author(s):  
Thomas J. Laffey ◽  
Desmond MacHale

AbstractLet G be a finite group and let Aut(G) be its automorphism group. Then G is called a k-orbit group if G has k orbits (equivalence classes) under the action of Aut(G). (For g, hG, we have g ~ h if ga = h for some Aut(G).) It is shown that if G is a k-orbit group, then kGp + 1, where p is the least prime dividing the order of G. The 3-orbit groups which are not of prime-power order are classified. It is shown that A5 is the only insoluble 4-orbit group, and a structure theorem is proved about soluble 4-orbit groups.


Sign in / Sign up

Export Citation Format

Share Document