Solvability for generalized nonlinear functional integral equations in Banach spaces with applications

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Amar Deep ◽  
Deepmala ◽  
Jamal Rezaei Roshan
2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Józef Banaś ◽  
Szymon Dudek

We study the solvability of some nonlinear functional integral equations in the Banach algebra of real functions defined, continuous, and bounded on the real half axis. We apply the technique of measures of noncompactness in order to obtain existence results for equations in question. Additionally, that technique allows us to obtain some characterization of considered integral equations. An example illustrating the obtained results is also included.


2004 ◽  
Vol 2004 (3) ◽  
pp. 271-282 ◽  
Author(s):  
B. C. Dhage

An algebraic fixed point theorem involving the three operators in a Banach algebra is proved using the properties of cones and they are further applied to a certain nonlinear integral equations of mixed type x(t)=k(t,x(μ(t)))+[f(t,x(θ(t)))](q(t)+∫0σ(t)v(t,s)g(s,x(η(s)))ds) for proving the existence of maximal and minimal solutions. Our results include the earlier fixed point theorems of Dhage (1992 and 1999) as special cases with a different but simple method.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Reza Arab ◽  
Hemant Kumar Nashine ◽  
N. H. Can ◽  
Tran Thanh Binh

AbstractWe investigate the solutions of functional-integral equation of fractional order in the setting of a measure of noncompactness on real-valued bounded and continuous Banach space. We introduce a new μ-set contraction operator and derive generalized Darbo fixed point results using an arbitrary measure of noncompactness in Banach spaces. An illustration is given in support of the solution of a functional-integral equation of fractional order.


2020 ◽  
Vol 1 (1) ◽  
pp. 33-46
Author(s):  
Mohammed S. Abdo

This paper discusses some existence results for at least one continuous solution for generalized fractional quadratic functional integral equations. Some results on nonlinear functional analysis including Schauder fixed point theorem are applied to establish the existence result for proposed equations. We improve and extend the literature by incorporated some well-known and commonly cited results as special cases in this topic. Further, we prove the existence of maximal and minimal solutions for these equations.


2014 ◽  
Vol 45 (4) ◽  
pp. 397-426 ◽  
Author(s):  
Bapurao Chandrabahan Dhage

In this paper, the author introduces a notion of partially condensing mappings in a partially ordered normed linear space and proves some hybrid fixed point theorems under certain mixed conditions of algebra, analysis and topology. The applications of abstract results presented here are given to some nonlinear functional integral equations for proving the existence as well as global attractivity of the comparable solutions under certain monotonicity conditions. The abstract theory presented here is very much useful to develop the algorithms for the solutions of some nonlinear problems of analysis and allied areas of mathematics. A realization of of our hypotheses is also indicated by a numerical example.


Filomat ◽  
2017 ◽  
Vol 31 (7) ◽  
pp. 2081-2091 ◽  
Author(s):  
Mishra Narayan ◽  
Mausumi Sen ◽  
Ram Mohapatra

In the present paper, utilizing the techniques of suitable measures of noncompactness in Banach algebra, we prove an existence theorem for nonlinear functional-integral equation which contains as particular cases several integral and functional-integral equations that appear in many branches of nonlinear analysis and its applications. We employ the fixed point theorems such as Darbo?s theorem in Banach algebra concerning the estimate on the solutions. We also provide a nontrivial example that explains the generalizations and applications of our main result.


Sign in / Sign up

Export Citation Format

Share Document