Why do these quite different best-choice problems have the same solutions?

2004 ◽  
Vol 36 (2) ◽  
pp. 398-416 ◽  
Author(s):  
Stephen M. Samuels

The full-information best-choice problem, as posed by Gilbert and Mosteller in 1966, asks us to find a stopping rule which maximizes the probability of selecting the largest of a sequence of n i.i.d. standard uniform random variables. Porosiński, in 1987, replaced a fixed n by a random N, uniform on {1,2,…,n} and independent of the observations. A partial-information problem, imbedded in a 1980 paper of Petruccelli, keeps n fixed but allows us to observe only the sequence of ranges (max - min), as well as whether or not the current observation is largest so far. Recently, Porosiński compared the solutions to his and Petruccelli's problems and found that the two problems have identical optimal rules as well as risks that are asymptotically equal. His discovery prompts the question: why? This paper gives a good explanation of the equivalence of the optimal rules. But even under the lens of a planar Poisson process model, it leaves the equivalence of the asymptotic risks as somewhat of a mystery. Meanwhile, two other problems have been shown to have the same limiting risks: the full-information problem with the (suboptimal) Porosiński-Petruccelli stopping rule, and the full-information ‘duration of holding the best’ problem of Ferguson, Hardwick and Tamaki, which turns out to be nothing but the Porosiński problem in disguise.

2004 ◽  
Vol 36 (02) ◽  
pp. 398-416 ◽  
Author(s):  
Stephen M. Samuels

The full-information best-choice problem, as posed by Gilbert and Mosteller in 1966, asks us to find a stopping rule which maximizes the probability of selecting the largest of a sequence of n i.i.d. standard uniform random variables. Porosiński, in 1987, replaced a fixed n by a random N, uniform on {1,2,…,n} and independent of the observations. A partial-information problem, imbedded in a 1980 paper of Petruccelli, keeps n fixed but allows us to observe only the sequence of ranges (max - min), as well as whether or not the current observation is largest so far. Recently, Porosiński compared the solutions to his and Petruccelli's problems and found that the two problems have identical optimal rules as well as risks that are asymptotically equal. His discovery prompts the question: why? This paper gives a good explanation of the equivalence of the optimal rules. But even under the lens of a planar Poisson process model, it leaves the equivalence of the asymptotic risks as somewhat of a mystery. Meanwhile, two other problems have been shown to have the same limiting risks: the full-information problem with the (suboptimal) Porosiński-Petruccelli stopping rule, and the full-information ‘duration of holding the best’ problem of Ferguson, Hardwick and Tamaki, which turns out to be nothing but the Porosiński problem in disguise.


2007 ◽  
Vol 44 (4) ◽  
pp. 996-1011 ◽  
Author(s):  
Alexander V. Gnedin

For τ, a stopping rule adapted to a sequence of n independent and identically distributed observations, we define the loss to be E[q(Rτ)], where Rj is the rank of the jth observation and q is a nondecreasing function of the rank. This setting covers both the best-choice problem, with q(r) = 1(r > 1), and Robbins' problem, with q(r) = r. As n tends to ∞, the stopping problem acquires a limiting form which is associated with the planar Poisson process. Inspecting the limit we establish bounds on the stopping value and reveal qualitative features of the optimal rule. In particular, we show that the complete history dependence persists in the limit; thus answering a question asked by Bruss (2005) in the context of Robbins' problem.


1996 ◽  
Vol 33 (3) ◽  
pp. 678-687 ◽  
Author(s):  
Alexander V. Gnedin

We introduce the optimal stopping problem of an infinite sequence of records associated with a planar Poisson process. This problem serves as a limiting form of the classical full information best-choice problem. A link between the finite problem and its limiting form is established via embedding n i.i.d. observations into the planar process.


1996 ◽  
Vol 33 (03) ◽  
pp. 678-687 ◽  
Author(s):  
Alexander V. Gnedin

We introduce the optimal stopping problem of an infinite sequence of records associated with a planar Poisson process. This problem serves as a limiting form of the classical full information best-choice problem. A link between the finite problem and its limiting form is established via embedding n i.i.d. observations into the planar process.


2007 ◽  
Vol 44 (04) ◽  
pp. 996-1011 ◽  
Author(s):  
Alexander V. Gnedin

For τ, a stopping rule adapted to a sequence ofnindependent and identically distributed observations, we define the loss to be E[q(Rτ)], whereRjis the rank of thejth observation andqis a nondecreasing function of the rank. This setting covers both the best-choice problem, withq(r) =1(r> 1), and Robbins' problem, withq(r) =r. Asntends to ∞, the stopping problem acquires a limiting form which is associated with the planar Poisson process. Inspecting the limit we establish bounds on the stopping value and reveal qualitative features of the optimal rule. In particular, we show that the complete history dependence persists in the limit; thus answering a question asked by Bruss (2005) in the context of Robbins' problem.


1986 ◽  
Vol 23 (3) ◽  
pp. 718-735 ◽  
Author(s):  
Mitsushi Tamaki

n i.i.d. random variables with known continuous distribution are observed sequentially with the objective of selecting the largest. This paper considers the finite-memory case which, at each stage, allows a solicitation of anyone of the last m observations as well as of the present one. If the (k – t)th observation with value x is solicited at the k th stage, the probability of successful solicitation is p1(x) or p2(x) according to whether t = 0 or 1 ≦ t ≦ m. The optimal procedure is shown to be characterized by the double sequences of decision numbers. A simple algorithm for calculating the decision numbers and the probability of selecting the largest is obtained in a special case.


Sign in / Sign up

Export Citation Format

Share Document