finite memory
Recently Published Documents


TOTAL DOCUMENTS

425
(FIVE YEARS 59)

H-INDEX

26
(FIVE YEARS 2)

Author(s):  
David Gamarnik ◽  
John N. Tsitsiklis ◽  
Martin Zubeldia

We consider a heterogeneous distributed service system consisting of n servers with unknown and possibly different processing rates. Jobs with unit mean arrive as a renewal process of rate proportional to n and are immediately dispatched to one of several queues associated with the servers. We assume that the dispatching decisions are made by a central dispatcher with the ability to exchange messages with the servers and endowed with a finite memory used to store information from one decision epoch to the next, about the current state of the queues and about the service rates of the servers. We study the fundamental resource requirements (memory bits and message exchange rate) in order for a dispatching policy to be always stable. First, we present a policy that is always stable while using a positive (but arbitrarily small) message rate and [Formula: see text] bits of memory. Second, we show that within a certain broad class of policies, a dispatching policy that exchanges [Formula: see text] messages per unit of time, and with [Formula: see text] bits of memory, cannot be always stable.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Philip Taranto ◽  
Felix A. Pollock ◽  
Kavan Modi

AbstractGeneric non-Markovian quantum processes have infinitely long memory, implying an exact description that grows exponentially in complexity with observation time. Here, we present a finite memory ansatz that approximates (or recovers) the true process with errors bounded by the strength of the non-Markovian memory. The introduced memory strength is an operational quantity and depends on the way the process is probed. Remarkably, the recovery error is bounded by the smallest memory strength over all possible probing methods. This allows for an unambiguous and efficient description of non-Markovian phenomena, enabling compression and recovery techniques pivotal to near-term technologies. We highlight the implications of our results by analyzing an exactly solvable model to show that memory truncation is possible even in a highly non-Markovian regime.


2021 ◽  
Author(s):  
Pin-Wen Su ◽  
Yu-Chih Huang ◽  
Shih-Chun Lin ◽  
I-Hsiang Wang ◽  
Chih-Chun Wang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document