On stability of queueing networks with job deadlines

2003 ◽  
Vol 40 (2) ◽  
pp. 293-304 ◽  
Author(s):  
Amy R. Ward ◽  
Nicholas Bambos

In this paper, we consider a single-server queue with stationary input, where each job joining the queue has an associated deadline. The deadline is a time constraint on job sojourn time and may be finite or infinite. If the job does not complete service before its deadline expires, it abandons the queue and the partial service it may have received up to that point is wasted. When the queue operates under a first-come-first served discipline, we establish conditions under which the actual workload process—that is, the work the server eventually processes—is unstable, weakly stable, and strongly stable. An interesting phenomenon observed is that in a nontrivial portion of the parameter space, the queue is weakly stable, but not strongly stable. We also indicate how our results apply to other nonidling service disciplines. We finally extend the results for a single node to acyclic (feed-forward) networks of queues with either per-queue or network-wide deadlines.

2003 ◽  
Vol 40 (02) ◽  
pp. 293-304
Author(s):  
Amy R. Ward ◽  
Nicholas Bambos

In this paper, we consider a single-server queue with stationary input, where each job joining the queue has an associated deadline. The deadline is a time constraint on job sojourn time and may be finite or infinite. If the job does not complete service before its deadline expires, it abandons the queue and the partial service it may have received up to that point is wasted. When the queue operates under a first-come-first served discipline, we establish conditions under which the actual workload process—that is, the work the server eventually processes—is unstable, weakly stable, and strongly stable. An interesting phenomenon observed is that in a nontrivial portion of the parameter space, the queue is weakly stable, but not strongly stable. We also indicate how our results apply to other nonidling service disciplines. We finally extend the results for a single node to acyclic (feed-forward) networks of queues with either per-queue or network-wide deadlines.


1997 ◽  
Vol 11 (4) ◽  
pp. 403-412 ◽  
Author(s):  
Moshe Haviv ◽  
Jan van der Wal

We consider a memoryless single-server queue in which users can purchase relative priority so as to reduce their expected waiting costs, which are linear with time. Relative priority is given in proportion to a price paid by customers present in the system. For two service disciplines, (weighted) processor sharing and (weighted) random entrance, we find the unique pure and symmetric Nash equilibrium price paid by the customers.


1989 ◽  
Vol 26 (02) ◽  
pp. 381-389 ◽  
Author(s):  
Nicholas Bambos ◽  
Jean Walrand

We consider a single-server queue with a periodic and ergodic input. It is shown that if the traffic intensity is less than 1, then the waiting time process is asymptotically periodic. Limit theorems associated with the asymptotic behavior of the queue are also proven. The results are then extended to acyclic networks of queues with periodic inputs. Particular cases of these results had been previously obtained for a single queue with periodic Poisson arrival input process and with independent and identically distributed service times.


1989 ◽  
Vol 26 (2) ◽  
pp. 381-389 ◽  
Author(s):  
Nicholas Bambos ◽  
Jean Walrand

We consider a single-server queue with a periodic and ergodic input. It is shown that if the traffic intensity is less than 1, then the waiting time process is asymptotically periodic. Limit theorems associated with the asymptotic behavior of the queue are also proven. The results are then extended to acyclic networks of queues with periodic inputs. Particular cases of these results had been previously obtained for a single queue with periodic Poisson arrival input process and with independent and identically distributed service times.


Sign in / Sign up

Export Citation Format

Share Document