The effects of temporary ischaemia on rat muscle spindles

Development ◽  
1986 ◽  
Vol 92 (1) ◽  
pp. 223-254
Author(s):  
F. H. Diwan ◽  
Alice Milburn

Soleus muscle of adult rat is revascularized 5–8 days after sectioning the supplying blood vessels. The temporary ischaemia thus produced results in the rapid concomitant degeneration of extra- and intrafusal muscle fibres along with their nerve terminals and supplying axons. The basal lamina of all muscle fibres usually remains intact throughout the degenerative phase. Necrotic sarcoplasm is removed by phagocytic cells. Satellite cells survive the temporary ischaemia and give rise to presumptive myoblasts which fill the basal-lamina tubes. These myoblasts fuse to form myotubes which, by the 14th day after devascularization, are maturing into muscle fibres in the absence of any innervation. Within the spindle, nuclear-bag fibres degenerate more rapidly than nuclear-chain fibres. Regeneration proceeds more rapidly within the basal-lamina tubes of the original bag fibres than within those of the chain fibres. Reinnervation of regenerating extra- and intrafusal fibres begins 21 days after devascularization and is completed some 7 days later, during which time further equatorial differentiation of some reinnervated intrafusal fibres may occur. Regenerated spindles vary considerably with respect to their innervation and equatorial nucleation. Most contain short, thin, additional muscle fibres as well as those that have regenerated within the basal-lamina tubes of the original fibres.

1. The structure and innervation of muscle spindles from normal, de-afferented and de-efferented muscles of the cat hind limb were studied. The spindles were either completely isolated by microdissection, or were serially sectioned transversely. 2. All spindles contain two distinct types of intrafusal muscle fibre, ‘nuclear bag fibres’ and ‘nuclear chain fibres’, which differ in structure and innervation. 3. Nuclear bag muscle fibres, usually two per spindle, are less than half the diameter of extrafusal fibres, and each contains numerous large nuclei packed together in the equatorial region of the spindle. Nuclear bag fibres practically never branch. The fibres contain numerous myofibrils uniformly distributed in cross-sections, and relatively little sarcoplasm; they atrophy very slowly after the ventral spinal roots are cut. Several small motor nerve fibres (y, fibres) enter each spindle and terminate in a number of discrete motor end-plates on the nuclear bag muscle fibres. These y x end-plates lie in a group at each spindle pole and long lengths of nuclear bag fibre are free of motor innervation. 4. Nuclear chain muscle fibres, usually four per spindle, are about half the length and diameter of nuclear bag fibres in spindles in the leg muscles. The nuclear chain fibres in spindles from the small muscles of the foot may, however, equal the nuclear bag fibres in length, and in diameter beyond the ends of the lymph space. Each nuclear chain fibre contains a single row of central nuclei in the equatorial region; the fibres occasionally branch, but often none of them do so. They contain fewer myofibrils per unit area, irregular in size and distribution, and relatively more sarcoplasm, than nuclear bag fibres. Nuclear chain fibres atrophy nearly as rapidly as extrafusal fibres after the ventral roots are cut. A number of very fine motor nerve fibres fibres) enter each spindle and terminate in a network of fine axons and small nerve endings (the network’) situated on the nuclear chain muscle fibres in most regions other than the nuclear region. 5. All spindles receive both y 1 xand y 2 innervation, fibres forming slightly more than half of the total number of motor fibres which varies from seven in simple spindles in phasic muscles to twenty-five in the most complex spindles in tonic muscles. Both y 1 and y 2 fibres remain intact after dorsal root transection and degenerate following ventral root transection. The histological evidence supports the view that the yj and y2 nerve fibres at the spindles are derived from two types of stem fibre, neither of which belongs to the a group. 6. Each spindle has one primary sensory nerve ending, supplied by one group 1 a afferent nerve fibre, and from zero to five secondary sensory nerve endings, each supplied by one group II afferent nerve fibre. The primary sensory terminations lie on both nuclear bag and nuclear chain muscle fibres. The secondary sensory terminations lie predominantly on the nuclear chain muscle fibres. In spindles with several secondary sensory endings, their terminations may lie on the same region of nuclear chain fibres as motor endings of the y 2 network. 7. In general, spindles in tonic muscles have more secondary sensory endings and motor nerve fibres and endings than those in other muscles. Nuclear chain intrafusal fibres are probably functionally ‘slower’ than nuclear bag intrafusal fibres, while both types are ‘slower’ than extrafusal fibres. Both nuclear chain fibres and nuclear bag fibres, however, probably show a gradation in activity related to the nature of the muscle in which they lie. The reader is advised to study figure 33 and its legend first, at the same time studying the plate figures to which reference is made in figure 33 b , then to read the portions of the Results in italics consecutively followed by the Discussion, finally studying the detailed Results. Further details of many of the illustrations and tables are available for reference in the Archives of the Royal Society.


1973 ◽  
Vol 12 (1) ◽  
pp. 175-195
Author(s):  
ALICE MILBURN

The morphogenesis of muscle spindles in rat lower hind-limb muscles has been investigated using the electron microscope. The earliest detectable spindles are seen in the 19.5-day foetus and consist of a single myotube bearing simple nerve terminals of the large primary afferent axon from nearby unmyelinated intramuscular nerve trunks. The capsule forms by an extension of the perineural epithelium of the supplying nerve fasciculus, and is confined initially to the innervated zone. Myonuclei accumulate in this region, so that the first intrafusal muscle fibre to develop is a nuclear-bag fibre. Myoblasts, present within the capsule of the spindle throughout its development, fuse to form a smaller less-differentiated myotube by the 20-day foetal stage. This new myotube matures by close association with the initial fibre, and by birth (21-22 days gestation) has formed the smaller, intermediate bag fibre, that has been identified histochemically and ultrastructurally in the adult. The nuclear-chain fibres develop in the same way; myoblasts fuse to form satellite myotubes that mature in pseudopodial apposition to one of the other fibres within its basement membrane. This apposition consists of extensions of sarcoplasm from the developing myotube into the supporting fibre. By the 4-day postnatal stage the full adult complement of 4 intrafusal muscle fibres is present, although ultrastructural variations, seen in the adult, are not differentiated. The fusimotor innervation begins to arrive at birth, but is not mature until the 12th postnatal day, when the myofibrillar ultrastructural differentiation, including the loss of the M-line in the large-diameter bag fibre, is complete. The periaxial space appears at the same time. It is suggested that the sequential development of the intrafusal fibres is a reflexion of the decreasing morphogenetic effect of the afferent innervation, whereas the role of the fusimotor innervation is in ultrastructural, myofibrillar differentiation.


Development ◽  
1984 ◽  
Vol 82 (1) ◽  
pp. 177-216
Author(s):  
Alice Milburn

The structure of developing spindles has been examined in cat peroneal muscles by light and electron microscopy, beginning at the 34- to 38-day foetal stage. By this stage α motoneurons have formed end-plates on primary myotubes. Secondary extrafusal myotubes then develop beneath the basal lamina of primary myotubes, and are innervated by motor axons early in their assembly. First-series secondary myotubes separate from primary myotubes prior to the development of subsequent series. The assembly of extrafusal fibres is completed by birth. Intrafusal fibres assemble in a similar manner. At the 34- to 38-day foetal stage developing spindles consist of a single primary myotube containing a small accumulation of myonuclei beneath the terminals of the la afferent axon. Simple motor nerve terminals also innervate this myotube, which will ultimately become the bag2 fibre of the mature spindle. Secondary intrafusal myotubes then assemble beneath the basal lamina of the primary bag2 myotube, in the order presumptive bag1, long-chain, intermediate-chain and typical-chain fibres. Their assembly begins at the equator, beneath the sensory terminals, and spreads to the poles. The bag1 and long-chain myotubes separate from the bag2 in the spindle pole prior to the development of the other chain fibres. The assembly of intrafusal fibres is completed by birth. The Periaxial space begins to develop in the first postnatal week. The development of tandem spindles containing b2C units is described. The role of sensory and motor innervation in the assembly and differentiation of mammalian intrafusal fibres is discussed.


1971 ◽  
Vol 51 (1) ◽  
pp. 83-103 ◽  
Author(s):  
William K. Ovalle

An ultrastructural comparison of the two types of intrafusal muscle fibers in muscle spindles of the rat was undertaken. Discrete myofibrils with abundant interfibrillar sarcoplasm and organelles characterize the nuclear chain muscle fiber, while a continuous myofibril-like bundle with sparse interfibrillar sarcoplasm distinguishes the nuclear bag muscle fiber. Nuclear chain fibers possess well-defined and typical M bands in the center of each sarcomere, while nuclear bag fibers contain ill-defined M bands composed of two parallel thin densities in the center of the pseudo-H zone of each sarcomere. Mitochondria of nuclear chain fibers are larger and more numerous than they are in nuclear bag fibers. Mitochondria of chain fibers, in addition, often contain conspicuous dense granules, and they are frequently intimately related to elements of the sarcoplasmic reticulum (SR). Striking differences are noted in the organization and degree of development of the sarcotubular system. Nuclear bag fibers contain a poorly developed SR and T system with only occasional junctional couplings (dyads and triads). Nuclear chain fibers, in contrast, possess an unusually well-developed SR and T system and a variety of multiple junctional couplings (dyads, triads, quatrads, pentads, septads). Greatly dilated SR cisternae are common features of nuclear chain fibers, often forming intimate associations with T tubules, mitochondria, and the sarcolemma. Such dilatations of the SR were not encountered in nuclear bag fibers. The functional significance of these structural findings is discussed.


1980 ◽  
Vol 208 (1171) ◽  
pp. 189-222 ◽  

After transplantation of the superficial fibular and the medial plantar nerve to neighbouring sites in the proximal region of adult rat soleus muscles many muscle fibres were initially innervated by axons in both foreign nerves after resection of the original soleus nerve. The foreign endplates were formed at ectopic sites and were often separately locatedon individual muscle fibres. After 3-4 weeks many endplates had been eliminated and most muscle fibres were innervated by only a single foreign axon. Many muscle fibres still had multiple esterase-staining endplate sites in the region innervated by the foreign nerve. On exami­nation by electronmicroscopy, some of these sites were seen to have lost their presynaptic terminal while the postsynaptic structure of the endplate remained intact. Other sites were only partially occupied by motor axon terminals. On each muscle fibre there was always at least one fully occupied endplate region. In some instances separate endplate sites on the same muscle fibre were innervated by branches of the same motor axon. We conclude that the elimination of endplates is due to a competitive interaction between motor axons innervating the same muscle fibre. Morphologically, the elimination of functional endplates is caused by a retraction of nerve terminals from the postsynaptic site.


1948 ◽  
Vol s3-89 (6) ◽  
pp. 143-185
Author(s):  
D. BARKER

A study of the morphology and innervation of muscle-spindles from the quadriceps of the rabbit and cat has shown that: 1. The intrafusal muscle-fibres do not subdivide in their course through the spindle, as is maintained in some descriptions, but retain their individuality from pole to pole. 2. There is no constant feature which is characteristic of one pole of a spindle and not the other. A distinction can be made between the proximal and distal ends only when it is possible to orientate the spindle according to the proximal and distal ends of the muscle. The extreme ends of the spindle are attached indifferently to extrafusal endomysium, tendon, or perimysial connective tissue. 3. In the equatorial region each muscle-fibre of the spindle contains a dense aggregation of spherical central nuclei (‘nuclear bag’). On either side of this aggregation oval nuclei are disposed in the form of a chain within a central core of protoplasm (‘myotube region’). The nuclear bag is devoid of cross-striations and presumably non-contractile. The two polar portions of the muscle-fibre on either side of the bag are striated and each receives a motor innervation; hence they are presumed to function as independent contractile units. 4. The number of end-plates possessed by a spindle is approximately double its number of intrafusal muscle-fibres, with half the total number of end-plates situated at each pole. The ratio is rarely exact, since one polar half of an intrafusal fibre frequently bears two end-plates; these are innervated by nerve-fibres which retain their individuality as far as they can be traced back from the spindle. Both small nerve-fibres (3-4 µ in gold chloride preparations) and relatively large nerve-fibres (6-7 µ in gold chloride preparations) take part in the motor innervation of muscle-spindles, as was deduced on physiological grounds by Leksell (1945). 5. An analysis of the sensory innervation has confirmed many of Ruffini's (1898) observations. Primary or ‘annulo-spiral’ and secondary or ‘flowerspray’ endings occur and they are innervated by independent nerve-fibres; it is suggested that Ruffini's terms ‘primary’ and ‘secondary’ be adopted since the descriptive terms cannot always be applied. In the rabbit the secondary ending is ‘annulo-spiral’ in form and differs little from the primary ending; in the cat it is more irregular and could be termed ‘flower-spray’. The primary ending is always present and is associated with the nuclear bags of the intrafusal muscle-fibres; in some instances its ramifications are more extensive and also entwine the myotube regions. The primary ending may be the only sensory termination present, or it may be accompanied by one or by two secondary endings. These are borne by the myotube regions of the musclefibres. In the rabbit's quadriceps and interossei, spindles with one primary and one secondary ending were the most frequent in the samples taken; in the cat's quadriceps spindles with one primary and two secondary endings were the most numerous. Both the primary and secondary nerve-fibres invariably ramify so as to innervate each intrafusal fibre in the muscle-bundle. The two sensory terminations are often closely intercalated but do not overlap with one another to any great extent. As estimated from measurements made on fresh, silver, and gold chloride preparations the total diameter of the primary fibre lies between 8 and 12 µ, that of the secondary fibre between 6 and 9 µ. 6. Apart from small sympathetic fibres innervating the vascular supply of the spindle, other finer fibres may occasionally be seen ramifying within the walls of the capsule and over the polar regions. It is possible that they are somatic sensory fibres subserving the sensation of pain. 7. The nature of the reflex effects of the afferent impulses discharged by the muscle-spindle and tendon-organ is considered, and it is concluded that the balance of evidence indicates that the afferent discharge from the spindle is excitatory and that from the tendon-organ inhibitory to the motor neurones of the same muscle. However, the identification of the spindle as the receptor which excites the stretch reflex is found to rest largely upon equivocal evidence, its acceptance depending ultimately upon Matthews's finding (1933) of a considerable difference-in threshold between the spindle and tendon-organ in response to stretch. It is suggested that the large primary fibre innervating the spindle should be identified as the ‘stretch afferent’ rather than the smaller secondary fibre specified by Matthews, for the rapid con duction rate of the afferent discharge exciting the stretch reflex (Lloyd, 1943) indicates that sensory fibres of the largest diameter are employed. The functional significance of the secondary fibres is obscure and the specific reflex functions of the sensory fibres innervating both the spindle and the tendon organ clearly require further elucidation.


1994 ◽  
Vol 42 (1) ◽  
pp. 77-88 ◽  
Author(s):  
F Pedrosa-Domellöf ◽  
L E Thornell

We studied serial sections of human fetal limb muscles (10-25 weeks of gestation) by light microscopic (LM) immunocytochemistry, using specific antibodies against slow-tonic, slow-twitch, fetal, embryonic, and alpha-cardiac myosin heavy chain (MHC) isoforms, neurofilament protein, laminin, and myomesin. One set of the first-generation myotubes expressed slow-tonic MHCs, and slow-twitch, fetal, and embryonic MHCs from the tenth week of gestation. These primary myotubes were identified as developing nuclear bag fibers. Second-generation myotubes in close apposition to the primary nuclear bag myotubes initially expressed only fetal and embryonic MHCs. One or more of these secondary myotubes acquired expression of slow-tonic and slow-twitch MHCs and gave rise to nuclear bag fibers. Most of the nuclear bag precursors expressed alpha-cardiac MHC. The secondary myotubes that expressed fetal and embryonic MHC but not slow-tonic, slow-twitch, or alpha-cardiac MHCs gave rise to the nuclear chain fibers. This study shows that different populations of fiber precursors, each with a unique sequence of MHC expression, gave rise to the nuclear bag and chain fibers, despite the presence of a common afferent nerve, from the early stages.


1982 ◽  
Vol 215 (1199) ◽  
pp. 147-154 ◽  

Collagenase treatment of rat intercostal muscles yielded single muscle fibres in which the nerve terminals and basal lamina were removed allowing an unimpeded view of the ecternal surface of the postsynaptic membrane. This was revealed by deep etching of freeze-fractured preparations and appeared as a maze of folds separated by deep troughs, showing on the crests of the folds a densely packed population of protrusions about 8⋅5 nm in diameter. These densely packed protrusions ( ca . 9000 μm -2 ) are mainly confined to the postsynaptic regions of the sarcolemma and presumably represent the acetycholine receptor molecules, which are highly concenrated in these areas. The protrusions are generally tightly packed without obvious regular arrangement, but in some areas, usually on the tops of the crests, they are arranged into irregular rows normal to the long axis of the folds.


Sign in / Sign up

Export Citation Format

Share Document