intrafusal muscle fibers
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 2)

H-INDEX

18
(FIVE YEARS 0)

2021 ◽  
Vol 15 ◽  
Author(s):  
Magdalena Gartych ◽  
Hanna Jackowiak ◽  
Dorota Bukowska ◽  
Jan Celichowski

This study sought to investigate the sexual dimorphism of muscle spindles in rat medial gastrocnemius muscle. The muscles were cut transversely into 5–10 and 20 μm thick serial sections and the number, density, and morphometric properties of the muscle spindles were determined. There was no significant difference (p > 0.05) in the number of muscle spindles of male (14.45 ± 2.77) and female (15.00 ± 3.13) rats. Muscle mass was 38.89% higher in males (1.08 vs. 0.66 g in females), making the density of these receptors significantly higher (p < 0.01) in females (approximately one spindle per 51.14 mg muscle mass vs. one per 79.91 mg in males). There were no significant differences between the morphometric properties of intrafusal muscle fibers or muscle spindles in male and female rats (p > 0.05): 5.16 ± 2.43 and 5.37 ± 2.27 μm for male and female intrafusal muscle fiber diameter, respectively; 5.57 ± 2.20 and 5.60 ± 2.16 μm for male and female intrafusal muscle fiber number, respectively; 25.85 ± 10.04 and 25.30 ± 9.96 μm for male and female shorter muscle spindle diameter, respectively; and 48.99 ± 20.73 and 43.97 ± 16.96 μm for male and female longer muscle spindle diameter, respectively. These findings suggest that sexual dimorphism in the muscle spindles of rat medial gastrocnemius is limited to density, which contrasts previous findings reporting differences in extrafusal fibers diameter.


2021 ◽  
Author(s):  
André Luis Shinohara ◽  
Carina Melo ◽  
Farooque Ahmed ◽  
Beatriz Sangalette ◽  
João Vitor Shindo ◽  
...  

Abstract Satellite cells (SC) are quiescent cell located between the sarcolemma and basal lamina of the skeletal muscle fibers. The SC can get activated contributing to regeneration and/or growth of muscle. The neuromuscular spindles are mechanoreceptors located within the skeletal muscle and are considered as contractile regulatory unit. It is composed of intrafusal muscle fibers (IF), surrounded by a sheath and is parallel to extrafusal fibers. Denervation cause changes in skeletal muscles both in the SC and neuromuscular spindles. This study analyzed quantitatively the IF and SC in Wistar rats denervated for long period. The animals were divided into normal and denervated groups. The soleus and extensor longus digitorum longus were denervated experimentally during periods of 0, 12, 16, 19, 30 and 38 weeks. The percentage of SC immediately after denervation increases when compared to normal group and later decreases in both the groups. During the process of denervation, there was an increase in IF when compared with normal group. The percentage of SC reduces significantly between the periods of denervation in both the groups. The smaller percentage of SC corresponds to higher number of IF. Besides that the number of SC decreases after denervation. As for IF, with the increase in time in normal group, the number of fibers was unaltered. However, in the experimental group, with increase in the time of denervation, the percentage of SC decreases while there is increase in the number of IF significantly. In denervated muscles for long period, there is decrease in the percentage of SC and increase in IF. Our results suggest that the period between 16th and 19th week post denervation is the best time for reinnervation of denervated muscle.


2012 ◽  
Vol 108 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Zhi Wang ◽  
LingYing Li ◽  
Eric Frank

Muscle sensory axons induce the development of specialized intrafusal muscle fibers in muscle spindles during development, but the role that the intrafusal fibers may play in the development of the central projections of these Ia sensory axons is unclear. In the present study, we assessed the influence of intrafusal fibers in muscle spindles on the formation of monosynaptic connections between Ia (muscle spindle) sensory axons and motoneurons (MNs) using two transgenic strains of mice. Deletion of the ErbB2 receptor from developing myotubes disrupts the formation of intrafusal muscle fibers and causes a nearly complete absence of functional synaptic connections between Ia axons and MNs. Monosynaptic connectivity can be fully restored by postnatal administration of neurotrophin-3 (NT-3), and the synaptic connections in NT-3-treated mice are as specific as in wild-type mice. Deletion of the Egr3 transcription factor also impairs the development of intrafusal muscle fibers and disrupts synaptic connectivity between Ia axons and MNs. Postnatal injections of NT-3 restore the normal strengths and specificity of Ia–motoneuronal connections in these mice as well. Severe deficits in intrafusal fiber development, therefore, do not disrupt the establishment of normal, selective patterns of connections between Ia axons and MNs, although these connections require the presence of NT-3, normally supplied by intrafusal fibers, to be functional.


Biomaterials ◽  
2010 ◽  
Vol 31 (32) ◽  
pp. 8218-8227 ◽  
Author(s):  
John W. Rumsey ◽  
Mainak Das ◽  
Abhijeet Bhalkikar ◽  
Maria Stancescu ◽  
James J. Hickman

2005 ◽  
Vol 169 (2) ◽  
pp. 257-268 ◽  
Author(s):  
Y'vonne Albert ◽  
Jennifer Whitehead ◽  
Laurie Eldredge ◽  
John Carter ◽  
Xiaoguang Gao ◽  
...  

Vertebrate muscle spindle stretch receptors are important for limb position sensation (proprioception) and stretch reflexes. The structurally complex stretch receptor arises from a single myotube, which is transformed into multiple intrafusal muscle fibers by sensory axon–dependent signal transduction that alters gene expression in the contacted myotubes. The sensory-derived signal transduction pathways that specify the fate of myotubes are very poorly understood. The zinc finger transcription factor, early growth response gene 3 (Egr3), is selectively expressed in sensory axon–contacted myotubes, and it is required for normal intrafusal muscle fiber differentiation and spindle development. Here, we show that overexpression of Egr3 in primary myotubes in vitro leads to the expression of a particular repertoire of genes, some of which we demonstrate are also regulated by Egr3 in developing intrafusal muscle fibers within spindles. Thus, our results identify a network of genes that are regulated by Egr3 and are involved in intrafusal muscle fiber differentiation. Moreover, we show that Egr3 mediates myotube fate specification that is induced by sensory innervation because skeletal myotubes that express Egr3 independent of other sensory axon regulation are transformed into muscle fibers with structural and molecular similarities to intrafusal muscle fibers. Hence, Egr3 is a target gene that is regulated by sensory innervation and that mediates gene expression involved in myotube fate specification and intrafusal muscle fiber morphogenesis.


2005 ◽  
Vol 32 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Jean-Marc Aimonetti ◽  
Edith Ribot-Ciscar ◽  
Christiane Rossi-Durand ◽  
Shahram Attarian ◽  
Jean Pouget ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document