scholarly journals Transition metal catalyzed reactions of diaryliodonium salts. VII. Palladium-catalyzed reaction of diaryliodonium salts with allylic alcohols.

1985 ◽  
pp. 558-560 ◽  
Author(s):  
Akio NISHIMURA ◽  
Masaharu UCHIYAMA ◽  
Takehiko SUZUKI ◽  
Yasuo YAMAZAKI
2002 ◽  
Vol 74 (8) ◽  
pp. 1327-1337 ◽  
Author(s):  
Irina P. Beletskaya

The palladium-catalyzed substitution reactions forming carbon­carbon and carbon­element bonds, as well as nickel-catalyzed addition of E­H and E­E' bonds across multiple bonds, are considered in their application to the chemistry of heterocyclic compounds.


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


Sign in / Sign up

Export Citation Format

Share Document