scholarly journals Studies on the π Electronic Energy Levels of Xanthene Dyes in Photographic Emulsion by Molecular Orbital Theory and on Their Relation w ith the Photographic Effects

1968 ◽  
Vol 71 (3) ◽  
pp. 322-326 ◽  
Author(s):  
Tadaaki TANI ◽  
Shin-ichi KIKUCHI ◽  
Kazuo HOSOYA
1970 ◽  
Vol 14 ◽  
pp. 250-267 ◽  
Author(s):  
David S. Urch

AbstractMolecules or ions usually exist as discrete units, in crystals of chemical compounds. Intermolecular or interionic coValent interactions are slight so the bond structure of such, solids is very similar to the pattern of energy levels in each individual molecule or ion. Simple molecular orbital theory can therefore be used to generate a qualitative picture of the energy levels in a molecule or an ion; and this picture can then be used directly to interpret X-ray emission spectra. The application of molecular orbital theory, using group theory to simplify the calculations is described for a tetrahedral unit ML4. The origin of peak shifts and of low-energy satellite peaks are rationalised. A consideration of orbital amplitudes shows that the ‘cross-over' theory of O'Brien and Skinner cannot explain the observed intensities of low-energy satellite peaks. It is suggested that the use of the M. 0. model for the interpretation of X-ray emission spectra permits far greater analytical and structural use to be made of peak shift and satellite data. Ligands can be identified even when their own characteristic emissions are not detected (e.g. oxygen and fluorine). Relative peak intensities can be correlated with atomic orbital participation in bond formation. Such information is of great interest to chemists and can often be used to identify the bonding r61e of specific orbitals (e.g. the 3d orbitals of second row, main group, elements).


The energy levels of benzene are calculated from a basis consisting of the five non-polar structures and tw enty-four polar structures, using the method given in part II. The role of polar structures is discussed. The results include a suggested new assignment for the 2080 Å bands of A 1 g - E 2 g , instead of A 1 g - B 1 u as required by molecular orbital theory. An intense A 1 g - E 1 u transition is calculated at 7·9 eV instead of the observed 6·7 to 7·0 eV. The disagreement with molecular orbital theory, to be dealt with more fully in a later paper, is briefly discussed.


1989 ◽  
Author(s):  
Alfred B. Anderson ◽  
Paul Shiller ◽  
Eugene A. Zarate ◽  
Claire A. Tessier-Youngs ◽  
Wiley J. Youngs

The system of bands in the visible region of the emission spectrum of magnesium hydride is now well known. The bands with heads at λλ 5622, 5211, 4845 were first measured by Prof. A. Fowler, who arranged many of the strongest lines in empirical series for identification with absorption lines in the spectra of sun-spots. Later, Heurlinger rearranged these series in the now familiar form of P, Q and R branches, and considered them, with the OH group, as typical of doublet systems in his classification of the fine structure of bands. More recently, W. W. Watson and P. Rudnick have remeasured these bands, using the second order of a 21-foot concave grating, and have carried out a further investigation of the fine structure in the light of the present theory of band spectra. Their detection of an isotope effect of the right order of magnitude, considered with the general structure of the system, and the experimental work on the production of the spectrum, seems conclusive in assigning these bands to the diatomic molecule MgH. The ultra-violet spectrum of magnesium hydride is not so well known. The band at λ 2430 and the series of double lines in the region λ 2940 to λ 3100, which were recorded by Prof. Fowler in 1909 as accompanying the group of bands in the visible region, appear to have undergone no further investigation. In view of the important part played by hydride band spectra in the correlation of molecular and atomic electronic energy levels, it was thought that a study of these features might prove of interest in yielding further information on the energy states of the MgH molecule. The present paper deals with observations on the band at λ 2430; details of an investigation of the other features of the ultra-violet spectrum will be given in a later communication.


Sign in / Sign up

Export Citation Format

Share Document