electronic energy
Recently Published Documents


TOTAL DOCUMENTS

2076
(FIVE YEARS 193)

H-INDEX

91
(FIVE YEARS 9)

RSC Advances ◽  
2022 ◽  
Vol 12 (3) ◽  
pp. 1361-1365
Author(s):  
Margaret Wolf ◽  
José J. Ortiz-Garcia ◽  
Matthew J. Guberman-Pfeffer ◽  
José A. Gascón ◽  
Rebecca C. Quardokus

Self-assembled islands of 5,10,15,20-tetrakis(pentafluoro-phenyl)porphyrin (2HTFPP) on Au(111) contain two bistable molecular species that differ by shifted electronic energy levels.


Author(s):  
Éric Brémond ◽  
Vincent Tognetti ◽  
Henry Chermette ◽  
Juan Carlos Sancho-García ◽  
Laurent Joubert ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Dmitry Bokov ◽  
Abduladheem Turki Jalil ◽  
Supat Chupradit ◽  
Wanich Suksatan ◽  
Mohammad Javed Ansari ◽  
...  

The sol-gel process is a more chemical method (wet chemical method) for the synthesis of various nanostructures, especially metal oxide nanoparticles. In this method, the molecular precursor (usually metal alkoxide) is dissolved in water or alcohol and converted to gel by heating and stirring by hydrolysis/alcoholysis. Since the gel obtained from the hydrolysis/alcoholysis process is wet or damp, it should be dried using appropriate methods depending on the desired properties and application of the gel. For example, if it is an alcoholic solution, the drying process is done by burning alcohol. After the drying stage, the produced gels are powdered and then calcined. The sol-gel method is a cost-effective method and due to the low reaction temperature there is good control over the chemical composition of the products. The sol-gel method can be used in the process of making ceramics as a molding material and can be used as an intermediate between thin films of metal oxides in various applications. The materials obtained from the sol-gel method are used in various optical, electronic, energy, surface engineering, biosensors, and pharmaceutical and separation technologies (such as chromatography). The sol-gel method is a conventional and industrial method for the synthesis of nanoparticles with different chemical composition. The basis of the sol-gel method is the production of a homogeneous sol from the precursors and its conversion into a gel. The solvent in the gel is then removed from the gel structure and the remaining gel is dried. The properties of the dried gel depend significantly on the drying method. In other words, the “removing solvent method” is selected according to the application in which the gel will be used. Dried gels in various ways are used in industries such as surface coating, building insulation, and the production of special clothing. It is worth mentioning that, by grinding the gel by special mills, it is possible to achieve nanoparticles.


2021 ◽  
Vol 75 (12) ◽  
Author(s):  
M. L. Crespillo ◽  
J. T. Graham ◽  
F. Agulló-López ◽  
Y. Zhang ◽  
W. J. Weber

AbstractResults recently reported on the effect of thermochemical treatments on the (He-Cd) laser-excited emission spectra of strontium titanate (STO) are re-analyzed here and compared with results obtained under ion-beam irradiation. Contributing bands centered at 2.4 eV and 2.8 eV, which appear under laser excitation, present intensities dependent upon previous thermal treatments in oxidizing (O2) or reducing atmosphere (H2). As a key result, the emission band centered at 2.8 eV is clearly enhanced in samples exposed to a reducing atmosphere. From a comparison with the ionoluminescence data, it is concluded that the laser-excited experiments can be rationalized within a framework developed from ion-beam excitation studies. In particular, the band at 2.8 eV, sometimes attributed to oxygen vacancies, behaves as expected for optical transitions from conduction-band (CB) states to the ground state level of the self-trapped exciton center. The band at 2.0 eV reported in ion-beam irradiated STO, and attributed to oxygen vacancies, is not observed in laser-excited crystals. As a consequence of our analysis, a consistent scheme of electronic energy levels and optical transitions can now be reliably offered for strontium titanate. Graphical abstract


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Camiel van Efferen ◽  
Jan Berges ◽  
Joshua Hall ◽  
Erik van Loon ◽  
Stefan Kraus ◽  
...  

AbstractIn the standard model of charge density wave (CDW) transitions, the displacement along a single phonon mode lowers the total electronic energy by creating a gap at the Fermi level, making the CDW a metal–insulator transition. Here, using scanning tunneling microscopy and spectroscopy and ab initio calculations, we show that VS2 realizes a CDW which stands out of this standard model. There is a full CDW gap residing in the unoccupied states of monolayer VS2. At the Fermi level, the CDW induces a topological metal-metal (Lifshitz) transition. Non-linear coupling of transverse and longitudinal phonons is essential for the formation of the CDW and the full gap above the Fermi level. Additionally, x-ray magnetic circular dichroism reveals the absence of net magnetization in this phase, pointing to coexisting charge and spin density waves in the ground state.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1424
Author(s):  
Maria V. Maevskaya ◽  
Aida V. Rudakova ◽  
Alexandra V. Koroleva ◽  
Aleksandr S. Sakhatskii ◽  
Alexei V. Emeline ◽  
...  

Here, we report the results of comparative studies of the photostimulated hydrophilic behavior of heterostructured TiO2/BiVO4 and ZnO/BiVO4, and monocomponent TiO2 and ZnO nanocoating surfaces. The chemical composition and morphology of the synthesized nanocoatings were characterized by XPS, SEM, and AFM methods. The electronic energy structure of the heterostructure components (band gap, top of the valence band, bottom of the conduction band, and Fermi level position) was determined on the basis of experimental results obtained by XPS, UV-V absorption spectroscopy and Kelvin probe methods. According to their electronic energy structure, the ZnO/BiVO4 and TiO2/BiVO4 heterostructures correspond to type I and type II heterostructures, respectively. The difference in the type of heterostructures causes the difference in the charge transfer behavior at heterojunctions: the type II TiO2/BiVO4 heterostructure favors and the type I ZnO/BiVO4 heterostructure prevents the photogenerated hole transfer from BiVO4 to the outer layer of the corresponding metal oxide. The results of the comparative studies show that the interaction of the photogenerated holes with surface hydroxy-hydrated multilayers is responsible for the superhydrophilic surface conversion accompanying the increase of the surface free energy and work function. The formation of the type II heterostructure leads to the spectral sensitization of the photostimulated surface superhydrophilic conversion.


2021 ◽  
Author(s):  
Alan Kadin

<div>It is widely believed that quantum computing is on the threshold of practicality, with performance that will soon greatly surpass that of classical computing. On the contrary, I argue that quantum computing does not currently exist, and probably never will. First, although quantum annealing systems have been demonstrated to solve practical optimization problems, they are actually performing classical analog annealing, with no quantum enhancement. In contrast, while systems of quantum gate arrays, which are expected to perform digital quantum computing, have been fabricated with up to ~ 100 qubits in several technologies, they have not performed any practical computations. This is not merely a question of excess noise; the theory of massive quantum entanglement, necessary for the desired performance, has never been actually been verified. The well-established quantum results such as electronic energy bands do not incorporate quantum entanglement. I suggest that the experimental observations in multi-qubit systems may be explained as the result of delocalized coupled oscillator modes, similar to that in electronic energy bands. Such coupled modes would not yield the exponential increase in degrees of freedom needed for quantum speedup, and hence would not be useful for computing. Tests on these multi-qubit systems should be able to distinguish these two models. The quantum computing research community really needs to address this issue.</div>


2021 ◽  
Author(s):  
Alan Kadin

<div>It is widely believed that quantum computing is on the threshold of practicality, with performance that will soon greatly surpass that of classical computing. On the contrary, I argue that quantum computing does not currently exist, and probably never will. First, although quantum annealing systems have been demonstrated to solve practical optimization problems, they are actually performing classical analog annealing, with no quantum enhancement. In contrast, while systems of quantum gate arrays, which are expected to perform digital quantum computing, have been fabricated with up to ~ 100 qubits in several technologies, they have not performed any practical computations. This is not merely a question of excess noise; the theory of massive quantum entanglement, necessary for the desired performance, has never been actually been verified. The well-established quantum results such as electronic energy bands do not incorporate quantum entanglement. I suggest that the experimental observations in multi-qubit systems may be explained as the result of delocalized coupled oscillator modes, similar to that in electronic energy bands. Such coupled modes would not yield the exponential increase in degrees of freedom needed for quantum speedup, and hence would not be useful for computing. Tests on these multi-qubit systems should be able to distinguish these two models. The quantum computing research community really needs to address this issue.</div>


2021 ◽  
Author(s):  
◽  
Richard Kleingeld

<p>Spectroscopy is the science of utilising light in order to divine information about a molecule or system of molecules. Specifically, the absorption, emission, and scattering of different wavelengths of light can provide data about bond strength, bond order, vibrational frequency, and excitation energy [1, 2]. As the wavelength and therefore energy of the incident photons can be set by the instrument, the exact energies of absorbance or emission of the molecule can be measured. This data can be gathered experimentally using specialised equipment however some molecules resist synthesis, and so a wealth of data about many theoretically possible species eludes us. We may also want to isolate the molecule in “empty space” whereas “gas phase” measurements are not always possible. This is one place where computational chemistry comes to the fore. Using an appropriate computational method such as density functional theory (DFT), data can be theoretically derived and calculated for many interesting areas of chemistry. DFT is a computational method based on the findings of Hohenberg and Kohn in 1964 that the ground state electronic energy of a system can be determined completely by the electron density [3-6]. This means that it has a considerably higher efficiency as a computational method compared to the wave function approach, where the number of variables increases exponentially as your system increases in size, as the electron density has the same number of variables regardless of the size of the system [7]. The use of an appropriate functional to map the electron density and the energy is one of the vital choices in utilising this method, but if chosen well can provide good results with a much lower computational cost than other methods, while still accounting for electron correlation effects [8]. It has become a very popular method due to its versatility and generally good accuracy with relatively low computational expense when compared to ab initio methods [9].</p>


Sign in / Sign up

Export Citation Format

Share Document