scholarly journals Lower Extremity Joint Stiffness And Energy Generation In Gait Transitions

2020 ◽  
Vol 52 (7S) ◽  
pp. 731-731
Author(s):  
Li Jin ◽  
Michael Hahn
2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Ziwei Zeng ◽  
Lulu Yin ◽  
Wenxing Zhou ◽  
Yu Zhang ◽  
Jiayi Jiang ◽  
...  

Purpose: Sports surface is one of the known external factors affecting running performance and injury. To date, we have found no study that examined the lower extremity stiffness in habitual forefoot strikers running on different overground surfaces. Therefore, the objective of this study was to investigate lower extremity stiffness and relevant kinematic adjustments in habitual forefoot strikers while running on different surfaces. Methods: Thirty-one male habitual forefoot strikers were recruited in this study. Runners were instructed to run at a speed of 3.3 m/s (±5%) on three surfaces, named synthetic rubber, concrete, and artificial grass. Results: No significant differences were found in leg stiffness, vertical stiffness, and joint stiffness in the sagittal plane during running on the three surfaces (p > 0.05). Running on artificial grass exerted a greater displacement in knee joint angle than running on synthetic rubber (p = 0.002, 95% CI = 1.52–7.35 degrees) and concrete (p = 0.006, 95% CI = 1.04–7.25 degrees). In the sagittal plane, peak knee moment was lower on concrete than on artificial grass (p = 0.003, 95% CI = 0.11–0.58 Nm/kg), whereas peak ankle moment was lower on synthetic rubber than on concrete (p < 0.001, 95% CI = 0.03–0.07 Nm/kg) and on artificial grass (p < 0.001, 95% CI = 0.02–0.06 Nm/kg). Among the three surfaces, the maximal ground reaction forces on concrete were the lowest (p < 0.05). Conclusions: This study indicated that running surfaces cannot influence lower extremity stiffness in habitual forefoot strikers at current running speed. Kinematic adjustments of knee and ankle, as well as ground reaction forces, may contribute to maintaining similar lower extremity stiffness.


2007 ◽  
Vol 40 ◽  
pp. S252
Author(s):  
Joseph Hamill ◽  
Michael Moses ◽  
Joseph Seay

1999 ◽  
Author(s):  
Li Li

Abstract Human running behavior has been modeled as bouncing ball. In this regard, mass-spring model has been employed to study the mechanical characteristics of lower extremity during running. The mechanical adaptation of the lower extremity to the environment during running presents significant considerations in the understanding of the mechanism that governing the mass-spring system. A mass-spring model with a changing equilibrium point is developed in this study. The model predicts that the knee joint will experience three different stages during running stance phase. Each stage (phase) is associated with different joint stiffness, which is constant with in the each phase. The model further suggests that this unique stiffness could be estimated by using kinematics of knee joint only without kinetic measures. This model provides information that improves our understanding of knee joint mechanical behavior and neuromuscular control mechanism. It also has important clinical applications.


2020 ◽  
Vol 29 (1) ◽  
pp. 28-36 ◽  
Author(s):  
Mark A. Sutherlin ◽  
L. Colby Mangum ◽  
Shawn Russell ◽  
Susan Saliba ◽  
Jay Hertel ◽  
...  

Context: Reduced spinal stabilization, delayed onset of muscle activation, and increased knee joint stiffness have been reported in individuals with a history of low back pain (LBP). Biomechanical adaptations resulting from LBP may increase the risk for future injury due to suboptimal loading of the lower-extremity or lumbar spine. Assessing landing mechanics in these individuals could help identify which structures might be susceptible to future injury. Objective: To compare vertical and joint stiffness of the lower-extremity and lumbar spine between individuals with and without a previous history of LBP. Design: Cross-sectional study. Setting: Research laboratory. Participants: There were 45 participants (24 without a previous history of LBP—age 23 [8] y, height 169.0 [8.5] cm, mass 69.8 [13.8] kg; 21 with a previous history of LBP—age 25[9] y, height 170.0 [8.0] cm, mass 70.2 [11.8] kg). Interventions: Single-limb landing trials on the dominant and nondominant limb from a 30-cm box. Main Outcome Measures: Vertical stiffness and joint stiffness of the ankle, knee, hip, and lumbar spine. Results: Individuals with a previous history of LBP had lower vertical stiffness (P = .04), but not joint stiffness measures compared with those without a previous history of LBP (P > .05). Overall females had lower vertical (P = .01), ankle (P = .02), and hip stiffness (P = .04) compared with males among all participants. Males with a previous history of LBP had lower vertical stiffness compared with males without a previous history LBP (P = .01). Among all individuals without a previous history of LBP, females had lower vertical (P < .01) and ankle stiffness measures (P = .04) compared with males. Conclusions: Landing stiffness may differ among males and females and a previous history of LBP. Comparisons between individuals with and without previous LBP should be considered when assessing landing strategies, and future research should focus on how LBP impacts landing mechanics.


Sign in / Sign up

Export Citation Format

Share Document