scholarly journals Particle formation from polymer emulsion under slow coagulation condition.

1990 ◽  
Vol 16 (4) ◽  
pp. 627-632 ◽  
Author(s):  
Takao Iwasaki ◽  
Katsushi Momose ◽  
Hiroshi Sakabe
Tellus B ◽  
2001 ◽  
Vol 53 (4) ◽  
pp. 380-393 ◽  
Author(s):  
J. M. MÄKELÄ ◽  
S. YLI‐KOIVISTO ◽  
V. HILTUNEN ◽  
W. SEIDL ◽  
E. SWIETLICKI ◽  
...  

Tellus B ◽  
2007 ◽  
Vol 59 (3) ◽  
Author(s):  
Birgit Wehner ◽  
Holger Siebert ◽  
Frank Stratmann ◽  
Thomas Tuch ◽  
Alfred Wiedensohler ◽  
...  

Tellus B ◽  
2008 ◽  
Vol 60 (4) ◽  
Author(s):  
Tareq Hussein ◽  
Jyrki Martikainen ◽  
Heikki Junninen ◽  
Larisa Sogacheva ◽  
Robert Wagner ◽  
...  

Tellus B ◽  
2008 ◽  
Vol 60 (4) ◽  
Author(s):  
Miikka Dal Maso ◽  
Antti Hyvärinen ◽  
Mika Komppula ◽  
Peter Tunved ◽  
Veli-Matti Kerminen ◽  
...  

2021 ◽  
Vol 5 (3) ◽  
pp. 487-499
Author(s):  
Yingqi Wang ◽  
Yue Zhao ◽  
Ziyue Li ◽  
Chenxi Li ◽  
Naiqiang Yan ◽  
...  

2020 ◽  
Vol 17 (1) ◽  
pp. 27-36
Author(s):  
Xingxing Xiong ◽  
Shengyu Zhang ◽  
Nan Fu ◽  
Hong Lei ◽  
Winston Duo Wu ◽  
...  

Abstract Fish oil was encapsulated with whey protein isolate (WPI) as wall material using a Micro-Fluidic Jet Spray Dryer. The effects of core/wall material ratio, drying temperature and total solids content on the properties of microcapsules were studied. Low core/wall material ratios at 1:5 and 1:3 resulted in high encapsulation efficiency (EE) and excellent oxidative stability of microparticles during storage. Reducing the inlet temperature from 160 to 110 °C remarkably decreased EE from around 99 to 64.8%, associated with substantial increases in peroxide value during storage. The total solids content mainly altered the morphology of microcapsules, showing little influence on EE and oxidative stability. We proposed that the different drying conditions impacted on particle formation behavior during spray drying, which could be a crucial factor responsible for the differences in the quality attributes of microparticles. A low core/wall material ratio and high drying temperature facilitated the formation of a rigid protein skin at droplet surface during drying, whereas a high solids fraction in the droplets could limit possible droplet shrinkage. These factors contributed positively to the encapsulation of the lipophilic core material.


Sign in / Sign up

Export Citation Format

Share Document