new particle formation
Recently Published Documents


TOTAL DOCUMENTS

907
(FIVE YEARS 265)

H-INDEX

73
(FIVE YEARS 9)

2022 ◽  
Vol 304 ◽  
pp. 114232
Author(s):  
C. Blanco-Alegre ◽  
A.I. Calvo ◽  
E. Alonso-Blanco ◽  
A. Castro ◽  
F. Oduber ◽  
...  

2021 ◽  
Vol 21 (23) ◽  
pp. 17885-17906
Author(s):  
Ying Zhou ◽  
Simo Hakala ◽  
Chao Yan ◽  
Yang Gao ◽  
Xiaohong Yao ◽  
...  

Abstract. Atmospheric new particle formation (NPF) events have attracted increasing attention for their contribution to the global aerosol number budget and therefore their effects on climate, air quality and human health. NPF events are regarded as a regional phenomenon, occurring over a large area. Most observations of NPF events in Beijing and its vicinity were conducted in populated areas, whereas observations of NPF events on mountaintops with low anthropogenic emissions are still rare in China. The spatial variation of NPF event intensity has not been investigated in detail by incorporating both urban areas and mountain measurements in Beijing. Here, we provide NPF event characteristics in summer 2018 and 2019 at urban Beijing and a comparison of NPF event characteristics – NPF event frequency, formation rate and growth rate – by comparing an urban Beijing site and a background mountain site separated by ∼80 km from 14 June to 14 July 2019, as well as giving insights into the connection between both locations. During parallel measurements at urban Beijing and mountain background areas, although the median condensation sink during the first 2 h of the common NPF events was around 0.01 s−1 at both sites, there were notable differences in formation rates between the two locations (median of 5.42 cm−3 s−1 at the urban site and 1.13 cm−3 s−1 at the mountain site during the first 2 h of common NPF events). In addition, the growth rates in the 7–15 nm range for common NPF events at the urban site (median of 7.6 nm h−1) were slightly higher than those at the mountain site (median of 6.5 nm h−1). To understand whether the observed events were connected, we compared air mass trajectories as well as meteorological conditions at both stations. Favorable conditions for the occurrence of regional NPF events were largely affected by air mass transport. Overall, our results demonstrate a clear inhomogeneity of regional NPF within a distance of ∼100 km, possibly due to the discretely distributed emission sources.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sandhya Jose ◽  
Amit Kumar Mishra ◽  
Neelesh K. Lodhi ◽  
Sudhir Kumar Sharma ◽  
Sachchidanand Singh

Accurate information about aerosol particle size distribution and its variation under different meteorological conditions are essential for reducing uncertainties related to aerosol-cloud-climate interaction processes. New particle formation (NPF) and the coagulation significantly affect the aerosol size distribution. Here we study the monthly and seasonal variability of aerosol particle size distribution at Delhi from December 2011 to January 2013. Analysis of aerosol particle size distribution using WRAS-GRIMM reveals that aerosol particle number concentration is highest during the post monsoon season owing to the effect of transported crop residue and biomass burning aerosols. Diurnal variations in number concentration show a bimodal pattern with two Aitken mode peaks in all the seasons. Monthly volume size distribution also shows bi-modal distribution with distinct coarse and fine modes. NPF events are observed less frequently in Delhi. Out of 222 days of WRAS data, only 17 NPF events have been observed, with higher NPF frequency during summer season. Growth rate of the nucleation mode of NPF events vary in the range 1.88–21.66 nm/h with a mean value of ∼8.45 ± 5.73 nm/h. It is found that during NPF events the Aitken and nucleation mode particles contribute more to the number concentration. Simultaneous measurement of UV flux and particulate matter (PM10 and PM2.5) have also been done along with particle number size distribution measurement to understand the possible mechanisms for NPF events over the study location.


2021 ◽  
Vol 21 (23) ◽  
pp. 17559-17576
Author(s):  
Mikko Sipilä ◽  
Nina Sarnela ◽  
Kimmo Neitola ◽  
Totti Laitinen ◽  
Deniz Kemppainen ◽  
...  

Abstract. The metallurgical industry in the Kola Peninsula, north-west Russia, form, after Norilsk, Siberia, the second largest source of air pollution in the Arctic and subarctic domain. Sulfur dioxide (SO2) emissions from the ore smelters are transported to wide areas, including Finnish Lapland. We performed investigations on concentrations of SO2, aerosol precursor vapours, aerosol and ion cluster size distributions together with chemical composition measurements of freshly formed clusters at the SMEAR I station in Finnish Lapland relatively close (∼ 300 km) to the Kola Peninsula industrial sites during the winter 2019–2020. We show that highly concentrated SO2 from smelter emissions is converted to sulfuric acid (H2SO4) in sufficient concentrations to drive new particle formation hundreds of kilometres downwind from the emission sources, even at very low solar radiation intensities. Observed new particle formation is primarily initiated by H2SO4–ammonia (negative-)ion-induced nucleation. Particle growth to cloud condensation nuclei (CCN) sizes was concluded to result from sulfuric acid condensation. However, air mass advection had a large role in modifying aerosol size distributions, and other growth mechanisms and condensation of other compounds cannot be fully excluded. Our results demonstrate the dominance of SO2 emissions in controlling wintertime aerosol and CCN concentrations in the subarctic region with a heavily polluting industry.


2021 ◽  
Vol 21 (23) ◽  
pp. 17389-17431
Author(s):  
Ditte Taipale ◽  
Veli-Matti Kerminen ◽  
Mikael Ehn ◽  
Markku Kulmala ◽  
Ülo Niinemets

Abstract. Most trees emit volatile organic compounds (VOCs) continuously throughout their life, but the rate of emission and spectrum of emitted VOCs become substantially altered when the trees experience stress. Despite this, models to predict the emissions of VOCs do not account for perturbations caused by biotic plant stress. Considering that such stresses have generally been forecast to increase in both frequency and severity in the future climate, the neglect of stress-induced plant emissions in models might be one of the key obstacles for realistic climate change predictions, since changes in VOC concentrations are known to greatly influence atmospheric aerosol processes. Thus, we constructed a model to study the impact of biotic plant stresses on new particle formation and growth throughout a full growing season. We simulated the influence on aerosol processes caused by herbivory by the European gypsy moth (Lymantria dispar) and autumnal moth (Epirrita autumnata) feeding on pedunculate oak (Quercus robur) and mountain birch (Betula pubescens var. pumila), respectively, and also fungal infections of pedunculate oak and balsam poplar (Populus balsamifera var. suaveolens) by oak powdery mildew (Erysiphe alphitoides) and poplar rust (Melampsora larici-populina), respectively. Our modelling results indicate that all the investigated plant stresses are capable of substantially perturbing both the number and size of aerosol particles in atmospherically relevant conditions, with increases in the amount of newly formed particles by up to about an order of magnitude and additional daily growth of up to almost 50 nm. We also showed that it can be more important to account for biotic plant stresses in models for local and regional predictions of new particle formation and growth during the time of infestation or infection than significant variations in, e.g. leaf area index and temperature and light conditions, which are currently the main parameters controlling predictions of VOC emissions. Our study thus demonstrates that biotic plant stress can be highly atmospherically relevant. To validate our findings, field measurements are urgently needed to quantify the role of stress emissions in atmospheric aerosol processes and for making integration of biotic plant stress emission responses into numerical models for prediction of atmospheric chemistry and physics, including climate change projection models, possible.


2021 ◽  
pp. 118894
Author(s):  
Vijay P. Kanawade ◽  
Mathew Sebastian ◽  
Rakesh K. Hooda ◽  
Antti Hyvärinen

Sign in / Sign up

Export Citation Format

Share Document