scholarly journals Feature article: Three-dimensional long-term bone marrow culture to analyze stromal cell biological function

2011 ◽  
Vol 236 (11) ◽  
pp. viii-viii
1986 ◽  
Vol 10 (6) ◽  
pp. 659-663 ◽  
Author(s):  
J.L. Chertkov ◽  
Nina J. Drize ◽  
Olga A. Gurevitch ◽  
G.A. Udalov

2019 ◽  
Vol 28 (7) ◽  
pp. 924-931
Author(s):  
Jingsong Wang ◽  
Karina T. Wright ◽  
Jade Perry ◽  
Bernhard Tins ◽  
Timothy Hopkins ◽  
...  

Autologous chondrocyte implantation (ACI) has been used to treat cartilage defects for >20 years, with promising clinical outcomes. Here, we report two first-in-man cases (patient A and B) treated with combined autologous chondrocyte and bone marrow mesenchymal stromal cell implantation (CACAMI), with 8-year follow up. Two patients with International Cartilage Repair Society (ICRS) grade III–IV cartilage lesions underwent a co-implantation of autologous chondrocytes and bone marrow-derived mesenchymal stromal cells (BM-MSCs) between February 2008 and October 2009. In brief, chondrocytes and BM-MSCs were separately isolated and culture-expanded in a good manufacturing practice laboratory for a period of 2–4 weeks. Cells were then implanted in combination into cartilage defects and patients were clinically evaluated preoperatively and postoperatively, using the self-reported Lysholm knee score and magnetic resonance imaging (MRI). Postoperative Lysholm scores were compared with the Oswestry risk of knee arthroplasty (ORKA) scores. Patient A also had a second-look arthroscopy, at which time a biopsy of the repair site was taken. Both patients demonstrated a significant long-term improvement in knee function, with postoperative Lysholm scores being consistently higher than ORKA predictions. The most recent Lysholm scores, 8 years after surgery were 100/100 (Patient A) and 88/100 (Patient B), where 100 represents a fully functioning knee joint. Bone marrow lesion (BML) volume was shown to decrease on postoperative MRIs in both patients. Cartilage defect area increased in patient A, but declined initially for patient B, slightly increasing again 2 years after treatment. The repair site biopsy taken from patient A at 14 months postoperatively, demonstrated a thin layer of fibrocartilage covering the treated defect site. The use of a combination of cultured autologous chondrocytes and BM-MSCs appears to confer long-term benefit in this two-patient case study. Improvements in knee function perhaps relate to the observed reduction in the size of the BML.


Blood ◽  
2000 ◽  
Vol 96 (9) ◽  
pp. 3272-3275 ◽  
Author(s):  
Helen A. Papadaki ◽  
Frances M. Gibson ◽  
Sian Rizzo ◽  
Edward C. Gordon-Smith ◽  
Judith C. W. Marsh

Abstract To investigate whether bone marrow (BM) stem cell compartment and/or BM microenvironment are affected by the immune insult in autoimmune cytopenias (AICs), BM stem cell reserve and function and BM stromal function were studied in 15 AIC patients. Stem cells were evaluated by means of flow cytometry, clonogenic progenitor cell assays, long-term BM cultures (LTBMCs), and limiting dilution assay for quantification of long-term–culture initiating cells (LTC-ICs). Stromal cell function was assessed with the use of preformed irradiated LTBMCs from patients and normal controls, recharged with normal CD34+ cells. AIC patients exhibited a high number of CD34+, CD34+/CD38+, and CD34+/CD38− cells; high frequency of granulocyte-macrophage colony forming units in the BM mononuclear cell fraction; high colony recovery in LTBMCs; and normal LTC-IC frequency. Patient BM stromal layers displayed normal hematopoietic-supporting capacity and increased production of granulocyte-colony stimulating factor. Data from this study support the concept that AIC patients with severe, resistant disease might be appropriate candidates for autologous stem cell transplantation.


Blood ◽  
1986 ◽  
Vol 68 (6) ◽  
pp. 1348-1354 ◽  
Author(s):  
A Johnson ◽  
K Dorshkind

Abstract Hemopoiesis in long-term bone marrow cultures (LTBMC) is dependent on adherent stromal cells that form an in vitro hemopoietic microenvironment. Myeloid bone marrow cultures (MBMC) are optimal for myelopoiesis, while lymphoid bone marrow cultures (LBMC) only support B lymphopoiesis. The experiments reported here have made a comparative analysis of the two cultures to determine whether the stromal cells that establish in vitro are restricted to the support of myelopoiesis or lymphopoiesis, respectively, and to examine how the different culture conditions affect stromal cell physiology. In order to facilitate this analysis, purified populations of MBMC and LBMC stroma were prepared by treating the LTBMC with the antibiotic mycophenolic acid; this results in the elimination of hemopoietic cells while retaining purified populations of functional stroma. Stromal cell cultures prepared and maintained under MBMC conditions secreted myeloid growth factors that stimulated the growth of granulocyte-macrophage colonies, while no such activity was detected from purified LBMC stromal cultures. However, this was not due to the inability of LBMC stroma to mediate this function. Transfer of LBMC stromal cultures to MBMC conditions resulted in an induction of myeloid growth factor secretion. When seeded under these conditions with stromal cell- depleted populations of hemopoietic cells, obtained by passing marrow through nylon wool columns, the LBMC stromal cells could support long- term myelopoiesis. Conversely, transfer of MBMC stroma to LBMC conditions resulted in a cessation of myeloid growth factor secretion; on seeding these cultures with nylon wool-passed marrow, B lymphopoiesis, but not myelopoiesis, initiated. These findings indicate that the stroma in the different LTBMC are not restricted in their hemopoietic support capacity but are sensitive to culture conditions in a manner that may affect the type of microenvironment formed.


Sign in / Sign up

Export Citation Format

Share Document