Transient Stability Enhancement of a Wind Energy Distributed Generation System by Using Fuzzy Logic Stabilizers

2012 ◽  
Vol 36 (6) ◽  
pp. 687-700 ◽  
Author(s):  
M. A. Ebrahim ◽  
K. A. El-Metwally ◽  
F. M. Bendary ◽  
W. M. Mansour

This paper proposes a new power system stabilizer based on fuzzy systems. The new controller is applied to a wind turbine generating system comprising of a wind turbine driving a 3 - phase synchronous generator connected to a large power system. The new controller significantly improves system performance. The enhancement in the dynamic response of the system is verified through simulation results of a system under different operating points and exposed to both small and large disturbances. Extension to the wind energy distributed generation based multi-machine case is also included to illustrate the effectiveness of the proposed stabilizer in damping power system swing mode oscillations that follow disturbances.

2013 ◽  
Vol 768 ◽  
pp. 313-316
Author(s):  
P. Sivakumar ◽  
C. Birindha

Distribution system is facing stability issues with integration of distributed generators and controllers. This proposed method presents the stability of renewable energy based distribution system with varying energy source considering intermittent nature of wind and solar energy using probabilistic approach. The system is supplied by conventional and distributed generating sources like PV and wind. Monte Carlo approach is used for predicting the wind and solar power uncertainties. Proposed work explains both small signal stability and transient stability enhancement of DG sourced power system with power system stabilizer and automatic voltage regulator .It is carried out in is 4 machine 10 bus system. The initial simulation has been carried out using MATLAB/SIMULINK.


2019 ◽  
Vol 9 (6) ◽  
pp. 4893-4900 ◽  
Author(s):  
N. E. Akpeke ◽  
C. M. Muriithi ◽  
C. Mwaniki

The increasing penetration of wind energy to the conventional power system due to the rapid growth of energy demand has led to the consideration of different wind turbine generator technologies. In fault conditions, the frequency of the power system decreases and eventually leads to speed differences between the grid and the interconnected wind generator. This can result to power system problems such as transient instability (TS). This paper focuses on enhancing the TS of a permanent magnet synchronous generator (PMSG)-based power system during 3ph fault conditions using FACTS devices. The power system considered is connected to a large wind farm which is based on PMSG. Critical clearing time (CCT) is used as an index to evaluate the transient state of the system. Under the study of an IEEE-14 bus system using PSAT as a simulation tool, the integrated CCT with PMSG-based wind turbine is improved with three independent FACTS devices. One of the synchronous generators in the test system has been replaced at random with the PMSG-based wind turbine which is meant to generate an equivalent power. Time domain simulations (TDSs) were carried out considering four study cases. Simulation results show that the (CCT) of the system with the FACTS devices is longer than the CCT without them, which is an indication of TS improvement.


2013 ◽  
Vol 341-342 ◽  
pp. 1374-1379
Author(s):  
Yang Liu ◽  
Zhen An Zhang ◽  
Wei Liu ◽  
Ya Nan Wang

With different element models and parameters in power system, the transient stability analysis results are also different, especially the model of generator and load. Based on the actual parameters of Hunan power grid, this paper builds the synthesis load model of the distribution network with small hydropower considered, and then the Hunan simulation network can also be got. Using PSASP, analyses the transient stability of Hunan power system with distributed small hydropower under different operation modes systematically and comprehensively. Through an overall check of the stability level in each Hunan area, and then compared with the analysis results of Hunan power grid based on the currently used load model , the influences of the distributed small hydropower on the safe and stable operation of the large power network are summarized.


Sign in / Sign up

Export Citation Format

Share Document