scholarly journals NMR structure of the 5' splice site in the group IIB intron Sc.ai5 --conformational requirements for exon-intron recognition

RNA ◽  
2014 ◽  
Vol 20 (3) ◽  
pp. 295-307 ◽  
Author(s):  
D. Kruschel ◽  
M. Skilandat ◽  
R. K. O. Sigel
1994 ◽  
Vol 14 (6) ◽  
pp. 3623-3633
Author(s):  
S R Lockhart ◽  
B C Rymond

The binding of a U1 small nuclear ribonucleoprotein (snRNP) particle to the 5' splice site region of a pre-mRNA is a primary step of intron recognition. In this report, we identify a novel 75-kDa polypeptide of Saccharomyces cerevisiae, Prp39p, necessary for the stable interaction of mRNA precursors with the snRNP components of the pre-mRNA splicing machinery. In vivo, temperature inactivation or metabolic depletion of Prp39p blocks pre-mRNA splicing and causes growth arrest. Analyses of cell extracts reveal a specific and dramatic increase in the electrophoretic mobility of the U1 snRNP particle upon Prp39p depletion and demonstrate that extracts deficient in Prp39p activity are unable to form either the CC1 or CC2 commitment complex band characteristic of productive U1 snRNP/pre-mRNA association. Immunological studies establish that Prp39p is uniquely associated with the U1 snRNP and is recruited with the U1 snRNP into splicing complexes. On the basis of these and related observations, we propose that Prp39p functions, at least in part, prior to stable branch point recognition by the U1 snRNP particle to facilitate or stabilize the U1 snRNP/5' splice site interaction.


1994 ◽  
Vol 14 (6) ◽  
pp. 3623-3633 ◽  
Author(s):  
S R Lockhart ◽  
B C Rymond

The binding of a U1 small nuclear ribonucleoprotein (snRNP) particle to the 5' splice site region of a pre-mRNA is a primary step of intron recognition. In this report, we identify a novel 75-kDa polypeptide of Saccharomyces cerevisiae, Prp39p, necessary for the stable interaction of mRNA precursors with the snRNP components of the pre-mRNA splicing machinery. In vivo, temperature inactivation or metabolic depletion of Prp39p blocks pre-mRNA splicing and causes growth arrest. Analyses of cell extracts reveal a specific and dramatic increase in the electrophoretic mobility of the U1 snRNP particle upon Prp39p depletion and demonstrate that extracts deficient in Prp39p activity are unable to form either the CC1 or CC2 commitment complex band characteristic of productive U1 snRNP/pre-mRNA association. Immunological studies establish that Prp39p is uniquely associated with the U1 snRNP and is recruited with the U1 snRNP into splicing complexes. On the basis of these and related observations, we propose that Prp39p functions, at least in part, prior to stable branch point recognition by the U1 snRNP particle to facilitate or stabilize the U1 snRNP/5' splice site interaction.


1993 ◽  
Vol 13 (8) ◽  
pp. 4485-4493
Author(s):  
H Lou ◽  
A J McCullough ◽  
M A Schuler

In contrast to mammalian and yeast systems, the mechanism for intron recognition and splice site selection in plant pre-mRNAs is poorly understood. Splice site sequences and putative branchpoint sequences are loosely conserved in plant introns compared with other eukaryotes. Perhaps to compensate for these variations, plant introns are significantly richer in adenosine and uridine residues than are their adjacent exons. To define elements critical for 3' splice site selection in dicotyledonous plant nuclei, pre-mRNA transcripts containing intron 3 of the maize Adh1 gene were expressed in Nicotiana benthamiana nuclei by using an autonomously replicating plant expression vector. Using a series of intron rearrangements which reposition the 3' intron-exon border, we demonstrate that the normal 3' splice site is defined in a position-dependent manner and that cryptic 3' splice sites within the intron are masked by the presence of a functional downstream 3' splice site. Disruption of the AU-rich elements upstream from the normal 3' splice site indicates that multiple AU elements between -66 and -6 cooperatively define the 3' boundary of the intron. These results are consistent with a model for plant intron recognition in which AU-rich elements spread throughout the length of the intron roughly define the intron boundaries by generating strong AU transition points. Functional 3' splice sites located downstream from these AU-rich sequences are preferentially selected over sites embedded within them.


1993 ◽  
Vol 13 (8) ◽  
pp. 4485-4493 ◽  
Author(s):  
H Lou ◽  
A J McCullough ◽  
M A Schuler

In contrast to mammalian and yeast systems, the mechanism for intron recognition and splice site selection in plant pre-mRNAs is poorly understood. Splice site sequences and putative branchpoint sequences are loosely conserved in plant introns compared with other eukaryotes. Perhaps to compensate for these variations, plant introns are significantly richer in adenosine and uridine residues than are their adjacent exons. To define elements critical for 3' splice site selection in dicotyledonous plant nuclei, pre-mRNA transcripts containing intron 3 of the maize Adh1 gene were expressed in Nicotiana benthamiana nuclei by using an autonomously replicating plant expression vector. Using a series of intron rearrangements which reposition the 3' intron-exon border, we demonstrate that the normal 3' splice site is defined in a position-dependent manner and that cryptic 3' splice sites within the intron are masked by the presence of a functional downstream 3' splice site. Disruption of the AU-rich elements upstream from the normal 3' splice site indicates that multiple AU elements between -66 and -6 cooperatively define the 3' boundary of the intron. These results are consistent with a model for plant intron recognition in which AU-rich elements spread throughout the length of the intron roughly define the intron boundaries by generating strong AU transition points. Functional 3' splice sites located downstream from these AU-rich sequences are preferentially selected over sites embedded within them.


Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
M Reibarkh ◽  
M Senior ◽  
RT Williamson ◽  
GE Martin ◽  
W Bermel

Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
J Oh ◽  
H Li ◽  
WM Elshamy ◽  
MT Hamann

2017 ◽  
Vol 48 (S 01) ◽  
pp. S1-S45
Author(s):  
O. Schwartz ◽  
J. Althaus ◽  
B. Fiedler ◽  
K. Heß ◽  
W. Paulus ◽  
...  

1996 ◽  
Vol 75 (06) ◽  
pp. 870-876 ◽  
Author(s):  
José Manuel Soria ◽  
Lutz-Peter Berg ◽  
Jordi Fontcuberta ◽  
Vijay V Kakkar ◽  
Xavier Estivill ◽  
...  

SummaryNonsense mutations, deletions and splice site mutations are a common cause of type I protein C deficiency. Either directly or indirectly by altering the reading frame, these' lesions generate or may generate premature stop codons and could therefore be expected to result in premature termination of translation. In this study, the possibility that such mutations could instead exert their pathological effects at an earlier stage in the expression pathway, through “allelic exclusion” at the RNA level, was investigated. Protein C (PROC) mRNA was analysed in seven Spanish type I protein C deficient patients heterozygous for two nonsense mutations, a 7bp deletion, a 2bp insertion and three splice site mutations. Ectopic RNA transcripts from patient and control lymphocytes were analysed by RT-PCR and direct sequencing of amplified PROC cDNA fragments. The nonsense mutations and the deletion were absent from the cDNAs indicating that only mRNA derived from the normal allele had been expressed. Similarly for the splice site mutations, only normal PROC cDNAs were obtained. In one case, exclusion of the mutated allele could be confirmed by polymorphism analysis. In contrast to these six mutations, the 2 bp insertion was not associated with loss of mRNA from the mutated allele. In this case, cDNA analysis revealed the absence of 19 bases from the PROC mRNA consistent with the generation and utilization of a cryptic splice site 3’ to the site of mutation, which would result in a frameshift and a premature stop codon. It is concluded that allelic exclusion is a common causative mechanism in those cases of type I protein C deficiency which result from mutations that introduce premature stop codons


1994 ◽  
Vol 72 (01) ◽  
pp. 065-069 ◽  
Author(s):  
J M Soria ◽  
D Brito ◽  
J Barceló ◽  
J Fontcuberta ◽  
L Botero ◽  
...  

SummarySingle strand conformation polymorphism (SSCP) analysis of exon 7 of the protein C gene has identified a novel splice site missense mutation (184, Q → H), in a newborn child with purpura fulminans and undetectable protein C levels. The mutation, seen in the homozygous state in the child and in the heterozygous state in her mother, was characterized and found to be a G to C nucleotide substitution at the -1 position of the donor splice site of intron 7 of the protein C gene, which changes histidine 184 for glutamine (184, Q → H). According to analysis of the normal and mutated sequences, this mutation should also abolish the function of the donor splice site of intron 7 of the protein C gene. Since such a mutation is compatible with the absence of gene product in plasma and since DNA sequencing of all protein C gene exons in this patient did not reveal any other mutation, we postulate that mutation 184, Q → H results in the absence of protein C gene product in plasma, which could be the cause of the severe phenotype observed in this patient.


Sign in / Sign up

Export Citation Format

Share Document