intron recognition
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Constantin Cretu ◽  
Patricia Gee ◽  
Xiang Liu ◽  
Anant Agrawal ◽  
Tuong-Vi Nguyen ◽  
...  

AbstractIntron selection during the formation of prespliceosomes is a critical event in pre-mRNA splicing. Chemical modulation of intron selection has emerged as a route for cancer therapy. Splicing modulators alter the splicing patterns in cells by binding to the U2 snRNP (small nuclear ribonucleoprotein)—a complex chaperoning the selection of branch and 3′ splice sites. Here we report crystal structures of the SF3B module of the U2 snRNP in complex with spliceostatin and sudemycin FR901464 analogs, and the cryo-electron microscopy structure of a cross-exon prespliceosome-like complex arrested with spliceostatin A. The structures reveal how modulators inactivate the branch site in a sequence-dependent manner and stall an E-to-A prespliceosome intermediate by covalent coupling to a nucleophilic zinc finger belonging to the SF3B subunit PHF5A. These findings support a mechanism of intron recognition by the U2 snRNP as a toehold-mediated strand invasion and advance an unanticipated drug targeting concept.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maureen V. Akinyi ◽  
Mikko J. Frilander

Many eukaryotic species contain two separate molecular machineries for removing non-coding intron sequences from pre-mRNA molecules. The majority of introns (more than 99.5% in humans) are recognized and excised by the major spliceosome, which utilizes relatively poorly conserved sequence elements at the 5′ and 3′ ends of the intron that are used for intron recognition and in subsequent catalysis. In contrast, the minor spliceosome targets a rare group of introns (approximately 0.5% in humans) with highly conserved sequences at the 5′ and 3′ ends of the intron. Minor introns coexist in the same genes with major introns and while the two intron types are spliced by separate spliceosomes, the two splicing machineries can interact with one another to shape mRNA processing events in genes containing minor introns. Here, we review known cooperative and competitive interactions between the two spliceosomes and discuss the mechanistic basis of the spliceosome crosstalk, its regulatory significance, and impact on spliceosome diseases.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Anand K Singh ◽  
Subhendu Roy Choudhury ◽  
Sandip De ◽  
Jie Zhang ◽  
Stephen Kissane ◽  
...  

UPF1 is an RNA helicase that is required for nonsense-mediated mRNA decay (NMD) in eukaryotes, and the predominant view is that UPF1 mainly operates on the 3’UTRs of mRNAs that are directed for NMD in the cytoplasm. Here we offer evidence, obtained from Drosophila, that UPF1 constantly moves between the nucleus and cytoplasm by a mechanism that requires its RNA helicase activity. UPF1 is associated, genome-wide, with nascent RNAs at most of the active Pol II transcription sites and at some Pol III-transcribed genes, as demonstrated microscopically on the polytene chromosomes of salivary glands and by ChIP-seq analysis in S2 cells. Intron recognition seems to interfere with association and translocation of UPF1 on nascent pre-mRNAs, and cells depleted of UPF1 show defects in the release of mRNAs from transcription sites and their export from the nucleus.


2018 ◽  
Author(s):  
Anand K. Singh ◽  
Subhendu Roy Choudhury ◽  
Sandip De ◽  
Jie Zhang ◽  
Stephen Kissane ◽  
...  

SummaryUPF1 is an RNA helicase that is required for efficient nonsense-mediated mRNA decay (NMD) in eukaryotes, and the predominant view is that UPF1 mainly operates on the 3’UTRs of mRNAs that are directed for NMD in the cytoplasm. Here we offer evidence, obtained from Drosophila, that UPF1 constantly moves between the nucleus and cytoplasm and that it has multiple functions in the nucleus. It is associated, genome-wide, with nascent RNAs at most of the active Pol II transcription sites and at some Pol III-transcribed genes, as demonstrated microscopically on the polytene chromosomes of salivary gland and by ChIP-seq analysis in S2 cells. Intron recognition seems to interfere with association and translocation of UPF1 on nascent pre-mRNA transcripts, and cells depleted of UPF1 show defects in several nuclear processes essential to correct gene expression – most strikingly, the release of mRNAs from transcription sites and mRNA export from the nucleus.


2018 ◽  
Author(s):  
Fang Bai ◽  
Jacob Corll ◽  
Donya N. Shodja ◽  
Ruth Davenport ◽  
Guanqiao Feng ◽  
...  

AbstractThe last eukaryotic common ancestor had two classes of introns that are still found in most eukaryotic lineages. Common U2-type and rare U12-type introns are spliced by the major and minor spliceosomes, respectively. Relatively few splicing factors have been shown to be specific to the minor spliceosome. We found that the maize RNA Binding Motif Protein48 (RBM48) is a U12 splicing factor that functions to promote cell differentiation and repress cell proliferation. RBM48 is coselected with the U12 splicing factor, ZRSR2/RGH3. Protein-protein interactions between RBM48, RGH3, and U2 Auxiliary Factor (U2AF) subunits suggest major and minor spliceosome factors may form complexes during intron recognition. Human RBM48 interacts with ARMC7. Maize RBM48 and ARMC7 have a conserved protein-protein interaction. These data predict that RBM48 is likely to function in U12 splicing throughout eukaryotes and that U12 splicing promotes endosperm cell differentiation in maize.


RNA ◽  
2014 ◽  
Vol 20 (3) ◽  
pp. 295-307 ◽  
Author(s):  
D. Kruschel ◽  
M. Skilandat ◽  
R. K. O. Sigel

2008 ◽  
Vol 28 (10) ◽  
pp. 3548-3560 ◽  
Author(s):  
Janne J. Turunen ◽  
Cindy L. Will ◽  
Michael Grote ◽  
Reinhard Lührmann ◽  
Mikko J. Frilander

ABSTRACT Little is currently known about proteins that make contact with the pre-mRNA in the U12-dependent spliceosome and thereby contribute to intron recognition. Using site-specific cross-linking, we detected an interaction between the U11-48K protein and U12-type 5′ splice sites (5′ss). This interaction did not require branch point recognition and was sensitive to 5′ss mutations, suggesting that 48K interacts with the 5′ss during the first steps of prespliceosome assembly in a sequence-dependent manner. RNA interference-induced knockdown of 48K in HeLa cells led to reduced cell growth and the inhibition of U12-type splicing, as well as the activation of cryptic, U2-type splice sites, suggesting that 48K plays a critical role in U12-type intron recognition. 48K knockdown also led to reduced levels of U11/U12 di-snRNP, indicating that 48K contributes to the stability and/or formation of this complex. In addition to making contact with the 5′ss, 48K interacts with the U11-59K protein, a protein at the interface of the U11/U12 di-snRNP. These studies provide important insights into the protein-mediated recognition of the U12-type 5′ss, as well as functionally important interactions within the U11/U12 di-snRNP.


2004 ◽  
Vol 32 (4) ◽  
pp. 561-564 ◽  
Author(s):  
M. Kalyna ◽  
A. Barta

Precursor-mRNA (pre-mRNA) processing is an important step in gene expression and its regulation leads to the expansion of the gene product repertoire. SR (serine-arginine)-rich proteins are key players in intron recognition and spliceosome assembly and significantly contribute to the alternative splicing process. Due to several duplication events, at least 19 SR proteins are present in the Arabidopsis genome, which is almost twice as many as in humans. They fall into seven different subfamilies, three of them homologous with metazoan splicing factors, whereas the other four seem to be specific for plants. The current results show that most of the duplicated genes have different spatiotemporal expression patterns indicating functional diversification. Interestingly, most of the SR protein genes are alternatively spliced and in some cases this process was shown to be under developmental and/or environmental control. This might greatly influence gene expression of target genes as also exemplified by ectopic expression studies of particular SR proteins.


EMBO Reports ◽  
2000 ◽  
Vol 1 (4) ◽  
pp. 334-339 ◽  
Author(s):  
Pascal J Lopez ◽  
Bertrand Séraphin

Sign in / Sign up

Export Citation Format

Share Document