Infrared Small Target Detection Based on Low Rank Sparse Decomposition in Gaussian Space

2020 ◽  
Vol 10 (05) ◽  
pp. 960-970
Author(s):  
田玫 窦
Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1426
Author(s):  
Jiaqi Yang ◽  
Yi Cui ◽  
Fei Song ◽  
Tao Lei

Infrared small target detection technology has sufficient applications in many engineering fields, such as infrared early warning, infrared tracking, and infrared reconnaissance. Due to the tiny size of the infrared small target and the lack of shape and texture information, existing methods often leave residuals or miss the target. To address these issues, a novel method based on a non-overlapping patch (NOP) joint l0-l1 norm is proposed with the introduction of sparsity regularized principal component pursuit (SRPCP). The NOP model makes the patch lighter in the first place, reducing time consumption. The adoption of the l0 norm enhances the sparsity of the target, while the adoption of the l1 norm enhances the robustness of the algorithm under clutter. As a smart optimization method, SRPCP solves the NOP model fittingly and achieves stable separation of low-rank and sparse components, thereby improving detection capacity while suppressing the background efficiently. The proposed method ultimately yielded favorable detection results. Adequate experiment results demonstrate that the proposed method is competitive in terms of background suppression and true target detection with respect to state-of-the-art methods. In addition, our method also reduces the computational time.


2019 ◽  
Vol 11 (5) ◽  
pp. 559 ◽  
Author(s):  
Tianfang Zhang ◽  
Hao Wu ◽  
Yuhan Liu ◽  
Lingbing Peng ◽  
Chunping Yang ◽  
...  

The infrared search and track (IRST) system has been widely used, and the field of infrared small target detection has also received much attention. Based on this background, this paper proposes a novel infrared small target detection method based on non-convex optimization with Lp-norm constraint (NOLC). The NOLC method strengthens the sparse item constraint with Lp-norm while appropriately scaling the constraints on low-rank item, so the NP-hard problem is transformed into a non-convex optimization problem. First, the infrared image is converted into a patch image and is secondly solved by the alternating direction method of multipliers (ADMM). In this paper, an efficient solver is given by improving the convergence strategy. The experiment shows that NOLC can accurately detect the target and greatly suppress the background, and the advantages of the NOLC method in detection efficiency and computational efficiency are verified.


2020 ◽  
Vol 12 (9) ◽  
pp. 1520 ◽  
Author(s):  
Xuewei Guan ◽  
Landan Zhang ◽  
Suqi Huang ◽  
Zhenming Peng

Small target detection is a crucial technique that restricts the performance of many infrared imaging systems. In this paper, a novel detection model of infrared small target via non-convex tensor rank surrogate joint local contrast energy (NTRS) is proposed. To improve the latest infrared patch-tensor (IPT) model, a non-convex tensor rank surrogate merging tensor nuclear norm (TNN) and the Laplace function, is utilized for low rank background patch-tensor constraint, which has a useful property of adaptively allocating weight for every singular value and can better approximate l 0 -norm. Considering that the local prior map can be equivalent to the saliency map, we introduce a local contrast energy feature into IPT detection framework to weight target tensor, which can efficiently suppress the background and preserve the target simultaneously. Besides, to remove the structured edges more thoroughly, we suggest an additional structured sparse regularization term using the l 1 , 1 , 2 -norm of third-order tensor. To solve the proposed model, a high-efficiency optimization way based on alternating direction method of multipliers with the fast computing of tensor singular value decomposition is designed. Finally, an adaptive threshold is utilized to extract real targets of the reconstructed target image. A series of experimental results show that the proposed method has robust detection performance and outperforms the other advanced methods.


Author(s):  
Mingming Fan ◽  
Shaoqing Tian ◽  
Kai Liu ◽  
Jiaxin Zhao ◽  
Yunsong Li

AbstractInfrared small target detection has been a challenging task due to the weak radiation intensity of targets and the complexity of the background. Traditional methods using hand-designed features are usually effective for specific background and have the problems of low detection rate and high false alarm rate in complex infrared scene. In order to fully exploit the features of infrared image, this paper proposes an infrared small target detection method based on region proposal and convolution neural network. Firstly, the small target intensity is enhanced according to the local intensity characteristics. Then, potential target regions are proposed by corner detection to ensure high detection rate of the method. Finally, the potential target regions are fed into the classifier based on convolutional neural network to eliminate the non-target regions, which can effectively suppress the complex background clutter. Extensive experiments demonstrate that the proposed method can effectively reduce the false alarm rate, and outperform other state-of-the-art methods in terms of subjective visual impression and quantitative evaluation metrics.


Sign in / Sign up

Export Citation Format

Share Document