scholarly journals Properties of Finite Order Meromorphic Solutions of Two Classes of Nonlinear Difference Equations

2016 ◽  
Vol 06 (03) ◽  
pp. 190-194
Author(s):  
升 李
2020 ◽  
Vol 18 (1) ◽  
pp. 1292-1301
Author(s):  
Huifang Liu ◽  
Zhiqiang Mao ◽  
Dan Zheng

Abstract This paper focuses on finite-order meromorphic solutions of nonlinear difference equation {f}^{n}(z)+q(z){e}^{Q(z)}{\text{Δ}}_{c}f(z)=p(z) , where p,q,Q are polynomials, n\ge 2 is an integer, and {\text{Δ}}_{c}f is the forward difference of f. A relationship between the growth and zero distribution of these solutions is obtained. Using this relationship, we obtain the form of these solutions of the aforementioned equation. Some examples are given to illustrate our results.


2016 ◽  
Vol 56 (1) ◽  
pp. 43-59
Author(s):  
Renukadevi S. Dyavanal ◽  
Madhura M. Mathai

Abstract In this paper, we shall investigate the existence of finite order entire and meromorphic solutions of linear difference equation of the form $$f^n (z) + p(z)f^{n - 2} (z) + L(z,f) = h(z)$$ where L(z, f) is linear difference polynomial in f(z), p(z) is non-zero polynomial and h(z) is a meromorphic function of finite order. We also consider finite order entire solution of linear difference equation of the form $$f^n (z) + p(z)L(z,f) = r(z)e^{q(z)}$$ where r(z) and q(z) are polynomials.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Min-Feng Chen ◽  
Ning Cui

AbstractLet f be an entire function of finite order, let $n\geq 1$ n ≥ 1 , $m\geq 1$ m ≥ 1 , $L(z,f)\not \equiv 0$ L ( z , f ) ≢ 0 be a linear difference polynomial of f with small meromorphic coefficients, and $P_{d}(z,f)\not \equiv 0$ P d ( z , f ) ≢ 0 be a difference polynomial in f of degree $d\leq n-1$ d ≤ n − 1 with small meromorphic coefficients. We consider the growth and zeros of $f^{n}(z)L^{m}(z,f)+P_{d}(z,f)$ f n ( z ) L m ( z , f ) + P d ( z , f ) . And some counterexamples are given to show that Theorem 3.1 proved by I. Laine (J. Math. Anal. Appl. 469:808–826, 2019) is not valid. In addition, we study meromorphic solutions to the difference equation of type $f^{n}(z)+P_{d}(z,f)=p_{1}e^{\alpha _{1}z}+p_{2}e^{\alpha _{2}z}$ f n ( z ) + P d ( z , f ) = p 1 e α 1 z + p 2 e α 2 z , where $n\geq 2$ n ≥ 2 , $P_{d}(z,f)\not \equiv 0$ P d ( z , f ) ≢ 0 is a difference polynomial in f of degree $d\leq n-2$ d ≤ n − 2 with small mromorphic coefficients, $p_{i}$ p i , $\alpha _{i}$ α i ($i=1,2$ i = 1 , 2 ) are nonzero constants such that $\alpha _{1}\neq \alpha _{2}$ α 1 ≠ α 2 . Our results are improvements and complements of Laine 2019, Latreuch 2017, Liu and Mao 2018.


2015 ◽  
Vol 93 (1) ◽  
pp. 92-98 ◽  
Author(s):  
FENG LÜ ◽  
QI HAN ◽  
WEIRAN LÜ

In this note, we prove a uniqueness theorem for finite-order meromorphic solutions to a class of difference equations of Malmquist type. Such solutions $f$ are uniquely determined by their poles and the zeros of $f-e_{j}$ (counting multiplicities) for two finite complex numbers $e_{1}\neq e_{2}$.


Sign in / Sign up

Export Citation Format

Share Document