scholarly journals On Salagean type pseudo-starlike functions

2017 ◽  
Vol 21 (2) ◽  
pp. 275-285
Author(s):  
Şahsene Altınkaya ◽  
Yeşim Sağlam Özkan

We construct two new subclasses of univalent functions in the open unit disk U = {z : |z| < 1}. For the first class £λ(β) of Salagean type λ-pseudo-starlike functions, using the sigmoid function, we establish upper bounds for the initial coefficients of the functions in this class. Furthermore, for the second class £λ (β, φ) we obtain Fekete-Szegö inequalities. The results presented in this paper generalize the recent work of Babalola.

2021 ◽  
Vol 5 (1) ◽  
pp. 42-50
Author(s):  
Timilehin Gideon Shaba ◽  

In this current study, we introduced and investigated two new subclasses of the bi-univalent functions associated with \(q\)-derivative operator; both \(f\) and \(f^{-1}\) are \(m\)-fold symmetric holomorphic functions in the open unit disk. Among other results, upper bounds for the coefficients \(|\rho_{m+1}|\) and \(|\rho_{2m+1}|\) are found in this study. Also certain special cases are indicated.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Hari Mohan Srivastava ◽  
Ahmad Motamednezhad ◽  
Safa Salehian

In this paper, we introduce a new comprehensive subclass ΣB(λ,μ,β) of meromorphic bi-univalent functions in the open unit disk U. We also find the upper bounds for the initial Taylor-Maclaurin coefficients |b0|, |b1| and |b2| for functions in this comprehensive subclass. Moreover, we obtain estimates for the general coefficients |bn|(n≧1) for functions in the subclass ΣB(λ,μ,β) by making use of the Faber polynomial expansion method. The results presented in this paper would generalize and improve several recent works on the subject.


Author(s):  
Timilehin G. Shaba ◽  
Amol B. Patil

In the present investigation, we introduce the subclasses $\varLambda_{\Sigma}^{m}(\eta,\leftthreetimes,\phi)$ and $\varLambda_{\Sigma}^{m}(\eta,\leftthreetimes,\delta)$ of \textit{m}-fold symmetric bi-univalent function class $\Sigma_m$, which are associated with the pseudo-starlike functions and defined in the open unit disk $\mathbb{U}$. Moreover, we obtain estimates on the initial coefficients $|b_{m+1}|$ and $|b_{2m+1}|$ for the functions belong to these subclasses and identified correlations with some of the earlier known classes.


Filomat ◽  
2015 ◽  
Vol 29 (8) ◽  
pp. 1839-1845 ◽  
Author(s):  
H.M. Srivastava ◽  
Sevtap Eker ◽  
Rosihan Alic

In this paper, we introduce and investigate a subclass of analytic and bi-univalent functions in the open unit disk U. By using the Faber polynomial expansions, we obtain upper bounds for the coefficients of functions belonging to this analytic and bi-univalent function class. Some interesting recent developments involving other subclasses of analytic and bi-univalent functions are also briefly mentioned.


2021 ◽  
Vol 66 (4) ◽  
pp. 659-666
Author(s):  
Abbas Kareem Wanas ◽  
◽  
Agnes Orsolya Pall-Szabo ◽  

In the present paper, we introduce and study two new subclasses of analytic and $m$-fold symmetric bi-univalent functions defined in the open unit disk $U$. Furthermore, for functions in each of the subclasses introduced here, we obtain upper bounds for the initial coefficients $\left| a_{m+1}\right|$ and $\left| a_{2m+1}\right|$. Also, we indicate certain special cases for our results.


2021 ◽  
Vol 39 (4) ◽  
pp. 153-164
Author(s):  
Ahmad Zireh ◽  
Saideh Hajiparvaneh

‎In this paper‎, ‎we introduce and investigate a subclass‎ of analytic and bi-univalent functions which both $f(z)$ and $f^{-1}(z)$ are m-fold symmetric in the open unit disk U‎. Furthermore‎, ‎we find upper bounds for the initial coefficients $|a_{m‎ + ‎1}|$ and $|a_{2m‎ + ‎1}|$ for functions in this subclass‎. ‎The results presented in this paper would generalize and improve some recent works‎.


2018 ◽  
Vol 68 (2) ◽  
pp. 369-378 ◽  
Author(s):  
Ahmad Zireh ◽  
Ebrahim Analouei Adegani ◽  
Mahmood Bidkham

Abstract In this paper, we use the Faber polynomial expansion to find upper bounds for |an| (n ≥ 3) coefficients of functions belong to classes $\begin{array}{} H_{q}^{\Sigma}(\lambda,h),\, ST_{q}^{\Sigma}(\alpha,h)\,\text{ and} \,\,M_{q}^{\Sigma}(\alpha,h) \end{array}$ which are defined by quasi-subordinations in the open unit disk 𝕌. Further, we generalize some of the previously published results.


2021 ◽  
Vol 39 (2) ◽  
pp. 87-104
Author(s):  
Ebrahim Analouei Adegani ◽  
Ahmad Zireh ◽  
Mostafa Jafari

In this work, we introduce a new subclas of bi-univalent functions which is defined by Hadamard product andsubordination in the open unit disk. and find upper bounds for the second and third coefficients for functions in this new subclass. Further, we generalize and improve some of the previously published results.


Filomat ◽  
2015 ◽  
Vol 29 (2) ◽  
pp. 351-360 ◽  
Author(s):  
Yong Sun ◽  
Yue-Ping Jiang ◽  
Antti Rasila

For ? ? 0 and 0 ? ? < 1 < ?, we denote by K(?,?,?) the class of normalized analytic functions satisfying the two sided-inequality ? < K (Zf'(z)/f(z) + z2f''(z)/f(z))<? (z ? U), where U is the open unit disk. Let K? (?, ?, ?) be the class of bi-univalent functions such that f and its inverse f-1 both belong to the class K(?, ?, ?). In this paper, we establish bounds for the coefficients, and solve the Fekete-Szeg? problem, for the class K((?,?,?). Furthermore, we obtain upper bounds for the first two Taylor-Maclaurin coefficients of the functions in the class K? (?,?,?)


2021 ◽  
Vol 20 ◽  
pp. 105-114
Author(s):  
Najah Ali Jiben Al-Ziadi

\In this work we present and investigate three new subclasses of  the function class  of bi-univalent functions in the open unit disk  defined by means of the Horadam polynomials. Furthermore, for functions in each of the subclasses introduced here, we obtain upper bounds for the initial coefficients  and . Also, we debate Fekete-Szegӧ inequality for functions belongs to these subclasses.    


Sign in / Sign up

Export Citation Format

Share Document