hadamard product
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 85)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
Mustafa I. Hameed ◽  
Buthyna Najad Shihab

The goal of this paper is to investigate some of the features of differential subordination of analytic univalent functions in an open unit disc. In addition, it has shed light on geometric features such as coefficient inequality, Hadamard product qualities, and the Komatu integral operator. Some intriguing results for third-order differential subordination and superordination of analytic univalent functions have been installed. Then, using the convolution of two linear operators, certain results of third order differential subordination involving linear operators were reported. As a result, we use features of the Komatu integral operator to analyze and study third-order subordinations and superordinations in relation to the convolution. Finally, several results for third order differential subordination in the open unit disk using generalized hypergeometric function have been addressed using the convolution operator.


Author(s):  
Weicun Zhang

The completed zeta function $\xi(s)$ is expanded in MacLaurin series (infinite polynomial), which can be further expressed as infinite product (Hadamard product) of quadratic factors by its complex conjugate zeros $\rho_i=\alpha_i +j\beta_i, \bar{\rho}_i=\alpha_i-j\beta_i, 0<\alpha_i<1, \beta_i\neq 0, i\in \mathbb{N}$ are natural numbers from 1 to infinity, $\rho_i$ are in order of increasing $|\rho_i|=\sqrt{\alpha_i^2+\beta_i^2}$, i.e., $|\rho_1|<|\rho_2|\leq|\rho_3|\leq |\rho_4|, \cdots$, together with $\beta_1<\beta_2\leq\beta_3\leq\beta_4, \cdots$. Then, according to the functional equation $\xi(s)=\xi(1-s)$, we have $$\xi(0)\prod_{i\in \mathbb{N}}\Big{(}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}+\frac{(s-\alpha_i)^2}{\alpha_i^2+\beta_i^2}\Big{)} =\xi(0)\prod_{i\in \mathbb{N}}\Big{(}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}+\frac{(1-s-\alpha_i)^2}{\alpha_i^2+\beta_i^2}\Big{)}$$ which, by Lemma 3, is equivalent to $$(s-\alpha_i)^2 = (1-s-\alpha_i)^2, i \in \mathbb{N}, \text{from 1 to infinity.}$$ with only valid solution $\alpha_i= \frac{1}{2}$ (another solution $s=\frac{1}{2}$ is invalid due to obvious contradiction). Thus, a proof of the Riemann Hypothesis is achieved.


Algorithmica ◽  
2022 ◽  
Author(s):  
V. Arvind ◽  
Abhranil Chatterjee ◽  
Rajit Datta ◽  
Partha Mukhopadhyay

2021 ◽  
Vol 104 (4) ◽  
pp. 68-73
Author(s):  
A. Da¸sdemir ◽  

Certain product rules take various forms in the set of hypercomplex numbers. In this paper, we introduce a new multiplication form of the hypercomplex numbers that will be called «the Hadamard product», inspired by the analogous product in the real matrix space, and investigate some algebraic properties of that, including the norm of inequality. In particular, we extend our new definition and its applications to the complex matrix theory.


Author(s):  
Weicun Zhang

The completed zeta function $\xi(s)$ is expanded in MacLaurin series (infinite polynomial), which can be further expressed as infinite product (Hadamard product) of quadratic factors by its complex conjugate zeros $\alpha_i\pm j\beta_i, \beta_i\neq 0, i\in \mathbb{N}$ are natural numbers, from $1$ to infinity, $\mathbb{N}$ is the set of natural numbers. Then, according to the functional equation $\xi(s)=\xi(1-s)$, we have $$\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(s-\alpha_i)^2}{\beta_i^2}\Big{)} =\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(1-s-\alpha_i)^2}{\beta_i^2}\Big{)}$$ which, by Lemma 3 and Corollary 1, is equivalent to $$(s-\alpha_i)^2 = (1-s-\alpha_i)^2, i \in \mathbb{N}$$ with solution $\alpha_i= \frac{1}{2}, i\in \mathbb{N}$ (another solution $s=\frac{1}{2}$ is invalid due to obvious contradiction). Thus, a proof of the Riemann Hypothesis is achieved.


Author(s):  
Weicun Zhang

The completed zeta function $\xi(s)$ is expanded in MacLaurin series (infinite polynomial), which can be further expressed as infinite product (Hadamard product) of quadratic factors by its complex conjugate zeros $\alpha_i\pm j\beta_i, \beta_i\neq 0, i\in \mathbb{N}$ ($\mathbb{N}$ is the set of natural numbers, from $1$ to infinity). Then, according to the functional equation $\xi(s)=\xi(1-s)$, we have $$\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(s-\alpha_i)^2}{\beta_i^2}\Big{)} =\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(1-s-\alpha_i)^2}{\beta_i^2}\Big{)}$$ which, by Lemma 3 and Corollary 1, is equivalent to $$(s-\alpha_i)^2 = (1-s-\alpha_i)^2, i \in \mathbb{N}$$ with solution $\alpha_i= \frac{1}{2}, i\in \mathbb{N}$ (another solution $s=\frac{1}{2}$ is invalid due to obvious contradiction). Thus, a proof of the Riemann Hypothesis is achieved.


Author(s):  
Syed Ghoos Ali Shah ◽  
Saqib Hussain ◽  
Saima Noor ◽  
Maslina Darus ◽  
Ibrar Ahmad

In this present paper, we introduce and explore certain new classes of uniformly convex and starlike functions related to the Liu–Owa integral operator. We explore various properties and characteristics, such as coefficient estimates, rate of growth, distortion result, radii of close-to-convexity, starlikeness, convexity, and Hadamard product. It is important to mention that our results are a generalization of the number of existing results in the literature.


Author(s):  
Weicun Zhang

The completed zeta function $\xi(s)$ is expanded in MacLaurin series (infinite polynomial), which can be further expressed as infinite product (Hadamard product) by its complex conjugate zeros $\alpha_i\pm j\beta_i, \beta_i\neq 0, i\in \mathbb{N}$. Then, according to the functional equation $\xi(s)=\xi(1-s)$, we have $$\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(s-\alpha_i)^2}{\beta_i^2}\Big{)} =\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(1-s-\alpha_i)^2}{\beta_i^2}\Big{)}$$ which, by Lemma 3 and Corollary 1, is equivalent to $$(s-\alpha_i)^2 = (1-s-\alpha_i)^2, i \in \mathbb{N}$$ with solution $\alpha_i= \frac{1}{2}, i\in \mathbb{N}$. Thus, a proof of the Riemann Hypothesis can be achieved.


Sign in / Sign up

Export Citation Format

Share Document