scholarly journals ANALYSIS OF DYNAMICAL BEHAVIORS FOR A DELAYED SIS EPIDEMIC MODEL WITH INCUBATION PERIOD

2015 ◽  
Vol 28 (5) ◽  
Author(s):  
Q. Liu ◽  
C. Deng
2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ramziya Rifhat ◽  
Qing Ge ◽  
Zhidong Teng

A stochastic SIS-type epidemic model with general nonlinear incidence and disease-induced mortality is investigated. It is proved that the dynamical behaviors of the model are determined by a certain threshold valueR~0. That is, whenR~0<1and together with an additional condition, the disease is extinct with probability one, and whenR~0>1, the disease is permanent in the mean in probability, and when there is not disease-related death, the disease oscillates stochastically about a positive number. Furthermore, whenR~0>1, the model admits positive recurrence and a unique stationary distribution. Particularly, the effects of the intensities of stochastic perturbation for the dynamical behaviors of the model are discussed in detail, and the dynamical behaviors for the stochastic SIS epidemic model with standard incidence are established. Finally, the numerical simulations are presented to illustrate the proposed open problems.


2014 ◽  
Vol 46 (01) ◽  
pp. 241-255 ◽  
Author(s):  
Peter Neal

We study the endemic behaviour of a homogeneously mixing SIS epidemic in a population of size N with a general infectious period, Q, by introducing a novel subcritical branching process with immigration approximation. This provides a simple but useful approximation of the quasistationary distribution of the SIS epidemic for finite N and the asymptotic Gaussian limit for the endemic equilibrium as N → ∞. A surprising observation is that the quasistationary distribution of the SIS epidemic model depends on Q only through


Sign in / Sign up

Export Citation Format

Share Document