scale free networks
Recently Published Documents


TOTAL DOCUMENTS

1261
(FIVE YEARS 147)

H-INDEX

76
(FIVE YEARS 9)

2021 ◽  
Author(s):  
Xian-jia wang ◽  
Lin-lin wang

Abstract Having a large number of timely donations during the early stages of a COVID-19 breakout would normally be considered rare. Donation is a special public goods game with zero yield, and it has the characteristics of prisoners’ dilemma. This paper discusses why timely donations in the early stages of COVID-19 occur. Based on the idea that donation is a strategy adopted by interconnected players on account of their understanding of the environment, donation-related populations are placed in social networks and the inter-correlation structure in the population is described by scale-free networks. Players in donation-related groups are of four types: donors, illegal beneficiaries, legal beneficiaries, and inactive people. We model the evolutionary game of donation on a scale-free network. Donors, illegal beneficiaries and inactive people learn and update strategies under the Fermi Update Rule, whereas the conversion between the legal beneficiaries and the other three strategies is determined by the environment surrounding the players. We study the evolution of cooperative action when the agglomeration coefficient, the parameters in the utility function, the selection strength parameter, the utility discount coefficient, the public goods discount coefficient and the initial state of the population in the scale-free network change. For population sizes of 50,100,150 and 200, we give the utility functions and the agglomeration coefficients for promoting cooperation. And we study the corresponding steady state and structural characteristics of the population. We identify the best ranges of selection strength K, the public goods discount coefficient α and the utility discount coefficient β for promoting cooperation at different population sizes. Furthermore, with an increase of the population size, the Donor Trap are found. At the same time, it is discovered that the initial state of the population has a great impact on the steady state; thus the Upper and Lower Triangle Phenomena are proposed. We also find that population size itself is also an important factor for promoting donation, pointing out the direction of efforts to further promote donation and achieve better social homeostasis under the donation model.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
József Dombi ◽  
Sakshi Dhama

AbstractDetecting a community structure on networks is a problem of interest in science and many other domains. Communities are special structures which may consist nodes with some common features. The identification of overlapping communities can clarify not so apparent features about relationships among the nodes of a network. A node in a community can have a membership in a community with a different degree. Here, we introduce a fuzzy based approach for overlapping community detection. A special type of fuzzy operator is used to define the membership strength for the nodes of community. Fuzzy systems and logic is a branch of mathematics which introduces many-valued logic to compute the truth value. The computed truth can have a value between 0 and 1. The preference modelling approach introduces some parameters for designing communities of particular strength. The strength of a community tells us to what degree each member of community is part of a community. As for relevance and applicability of the community detection method on different types of data and in various situations, this approach generates a possibility for the user to be able to control the overlap regions created while detecting the communities. We extend the existing methods which use local function optimization for community detection. The LFM method uses a local fitness function for a community to identify the community structures. We present a community fitness function in pliant logic form and provide mathematical proofs of its properties, then we apply the preference implication of continuous-valued logic. The preference implication is based on two important parameters $$\nu$$ ν and $$\alpha$$ α . The parameter $$\nu$$ ν of the preference-implication allows us to control the design of the communities according to our requirement of the strength of the community. The parameter $$\alpha$$ α defines the sharpness of preference implication. A smaller value of the threshold for community membership creates bigger communities and more overlapping regions. A higher value of community membership threshold creates stronger communities with nodes having more participation in the community. The threshold is controlled by $$\delta$$ δ which defines the degree of relationship of a node to a community. To balance the creation of overlap regions, stronger communities and reducing outliers we choose a third parameter $$\delta$$ δ in such a way that it controls the community strength by varying the membership threshold as community evolves over time. We test the theoretical model by conducting experiments on artificial and real scale-free networks. We test the behaviour of all the parameters on different data-sets and report the outliers found. In our experiments, we found a good relationship between $$\nu$$ ν and overlapping nodes in communities.


2021 ◽  
Vol 152 ◽  
pp. 111420
Author(s):  
Changchun Lv ◽  
Ziwei Yuan ◽  
Shubin Si ◽  
Dongli Duan

2021 ◽  
Vol 12 (6) ◽  
pp. 1-15
Author(s):  
Isao Nakajima ◽  
Kiyoshi Kurokawa ◽  
Seiji Morita ◽  
Yoshihide Nakagawa

With the aim of slowing the spread of infectious disease in the earliest phase of an outbreak, we performed visual simulations using scale-free networks focused on circumstances such as “normal” daily life, pandemic outbreaks, and the Fukushima nuclear accident following the Great East Japan Earthquake of 2011. Due to limitations associated with face-to-face contacts and delays in the timing of intake of iodine tablets, iodine preparations for protecting the thyroid gland could be taken effectively by only 5% of the population in the aftermath of the Fukushima nuclear accident. For targeted antivirus prophylaxis (TAP) to be more effective, timing of the distribution of anti-viral medication needs to be planned well in advance and instructions to “take it now!” must be communicated effectively in a timely manner. The results of this study suggest that information communication technology (e.g., pulse oximeters, mobile phones) can play an important role in managing TAP policies.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
M. L. Bertotti ◽  
G. Modanese

We prove that the presence of a diagonal assortative degree correlation, even if small, has the effect of dramatically lowering the epidemic threshold of large scale-free networks. The correlation matrix considered is P h | k = 1 − r P h k U + r δ h k , where P U is uncorrelated and r (the Newman assortativity coefficient) can be very small. The effect is uniform in the scale exponent γ if the network size is measured by the largest degree n . We also prove that it is possible to construct, via the Porto–Weber method, correlation matrices which have the same k n n as the P h | k above, but very different elements and spectra, and thus lead to different epidemic diffusion and threshold. Moreover, we study a subset of the admissible transformations of the form P h | k ⟶ P h | k + Φ h , k with Φ h , k depending on a parameter which leaves k n n invariant. Such transformations affect in general the epidemic threshold. We find, however, that this does not happen when they act between networks with constant k n n , i.e., networks in which the average neighbor degree is independent from the degree itself (a wider class than that of strictly uncorrelated networks).


Sign in / Sign up

Export Citation Format

Share Document