scholarly journals Asymptotic behavior of solutions of 1D-Burgers equation with quasi-periodic forcing

1998 ◽  
Vol 11 (2) ◽  
pp. 219 ◽  
Author(s):  
Ya. G. Sinai
2006 ◽  
Vol 03 (02) ◽  
pp. 387-401 ◽  
Author(s):  
DEBORA AMADORI ◽  
DENIS SERRE

We consider the asymptotic behavior of the solution of a forced scalar conservation law, where both the forcing and the initial data are periodic. We prove that there exists a steady state toward which the solution converges in the L1 norm, as t → ∞. We do not assume any smallness or smoothness of the initial data. The limit steady state can be discontinuous, as effect of resonance, and it can be identified when the potential of the forcing term has a unique global minimum, thanks to the conservation of mass. The flux is assumed to be strictly convex; the relevance of this assumption is justified by the construction of solutions with a lattice of periods for a flux with an inflection point.


2021 ◽  
pp. 1-19
Author(s):  
Natsumi Yoshida

In this paper, we investigate the asymptotic behavior of solutions to the Cauchy problem with the far field condititon for the generalized Benjamin–Bona–Mahony–Burgers equation with a fourth-order dissipative term. When the corresponding Riemann problem for the hyperbolic part admits a Riemann solution which consists of single rarefaction wave, it is proved that the solution of the Cauchy problem tends toward the rarefaction wave as time goes to infinity. We can further obtain the same global asymptotic stability of the rarefaction wave to the generalized Korteweg–de Vries–Benjamin–Bona–Mahony–Burgers equation with a fourth-order dissipative term as the former one.


Sign in / Sign up

Export Citation Format

Share Document