scalar conservation
Recently Published Documents


TOTAL DOCUMENTS

647
(FIVE YEARS 82)

H-INDEX

41
(FIVE YEARS 2)

Author(s):  
Konstantinos Dareiotis ◽  
Benjamin Gess ◽  
Manuel V. Gnann ◽  
Günther Grün

AbstractWe prove the existence of non-negative martingale solutions to a class of stochastic degenerate-parabolic fourth-order PDEs arising in surface-tension driven thin-film flow influenced by thermal noise. The construction applies to a range of mobilites including the cubic one which occurs under the assumption of a no-slip condition at the liquid-solid interface. Since their introduction more than 15 years ago, by Davidovitch, Moro, and Stone and by Grün, Mecke, and Rauscher, the existence of solutions to stochastic thin-film equations for cubic mobilities has been an open problem, even in the case of sufficiently regular noise. Our proof of global-in-time solutions relies on a careful combination of entropy and energy estimates in conjunction with a tailor-made approximation procedure to control the formation of shocks caused by the nonlinear stochastic scalar conservation law structure of the noise.


Author(s):  
Gopikrishnan Chirappurathu Remesan

A uniform bounded variation estimate for finite volume approximations of the nonlinear scalar conservation law $\partial_t \alpha + \mathrm{div}(\boldsymbol{u}f(\alpha)) = 0$ in two and three spatial dimensions with an initial data of bounded variation is established.  We assume that the divergence of the velocity $\mathrm{div}(\boldsymbol{u})$ is of bounded variation instead of the classical assumption that $\mathrm{div}(\boldsymbol{u})$ is zero. The finite volume schemes analysed in this article are set on nonuniform Cartesian grids. A uniform bounded variation estimate for finite volume solutions of the conservation law $\partial_t \alpha + \mathrm{div}(\boldsymbol{F}(t,\boldsymbol{x},\alpha)) = 0$, where $\mathrm{div}_{\boldsymbol{x}}\boldsymbol{F} \not=0$ on nonuniform Cartesian grids is also proved. Such an estimate provides compactness for finite volume approximations in $L^p$ spaces, which is essential to prove the existence of a solution for a partial differential equation with nonlinear terms in $\alpha$, when the uniqueness of the solution is not available. This application is demonstrated by establishing the existence of a weak solution for a model that describes the evolution of initial stages of breast cancer proposed by S. J. Franks et al.~\cite{Franks2003424}. The model consists of four coupled variables: tumour cell concentration, tumour cell velocity--pressure, and nutrient concentration, which are governed by a hyperbolic conservation law, viscous Stokes system, and Poisson equation, respectively.


2021 ◽  
Vol 18 (02) ◽  
pp. 271-292
Author(s):  
Logan F. Stokols

We study small shocks of 1D scalar viscous conservation laws with uniformly convex flux and nonlinear dissipation. We show that such shocks are [Formula: see text] stable independently of the strength of the dissipation, even with large perturbations. The proof uses the relative entropy method with a spatially-inhomogeneous pseudo-norm.


Sign in / Sign up

Export Citation Format

Share Document