scholarly journals Functional Limit Theorems for Shot Noise Processes with Weakly Dependent Noises

2020 ◽  
Vol 10 (2) ◽  
pp. 99-123
Author(s):  
Guodong Pang ◽  
Yuhang Zhou

We study shot noise processes when the shot noises are weakly dependent, satisfying the ρ-mixing condition. We prove a functional weak law of large numbers and a functional central limit theorem for this shot noise process in an asymptotic regime with a high intensity of shots. The deterministic fluid limit is unaffected by the presence of weak dependence. The limit in the diffusion scale is a continuous Gaussian process whose covariance function explicitly captures the dependence among the noises. The model and results can be applied in financial and insurance risks with dependent claims as well as queueing systems with dependent service times. To prove the existence of the limit process, we employ the existence criterion that uses a maximal inequality requiring a set function with a superadditivity property. We identify such a set function for the limit process by exploiting the ρ-mixing condition. To prove the weak convergence, we establish the tightness property and the convergence of finite dimensional distributions. To prove tightness, we construct two auxiliary processes and apply an Ottaviani-type inequality for weakly dependent sequences.

2020 ◽  
Vol 57 (1) ◽  
pp. 280-294
Author(s):  
Alexander Iksanov ◽  
Bohdan Rashytov

AbstractBy a general shot noise process we mean a shot noise process in which the counting process of shots is arbitrary locally finite. Assuming that the counting process of shots satisfies a functional limit theorem in the Skorokhod space with a locally Hölder continuous Gaussian limit process, and that the response function is regularly varying at infinity, we prove that the corresponding general shot noise process satisfies a similar functional limit theorem with a different limit process and different normalization and centering functions. For instance, if the limit process for the counting process of shots is a Brownian motion, then the limit process for the general shot noise process is a Riemann–Liouville process. We specialize our result for five particular counting processes. Also, we investigate Hölder continuity of the limit processes for general shot noise processes.


1987 ◽  
Vol 19 (3) ◽  
pp. 743-745 ◽  
Author(s):  
Tailen Hsing

The crossing intensity of a level by a shot noise process with a monotone response is studied, and it is shown that the intensity can be naturally expressed in terms of a marginal probability.


1987 ◽  
Vol 24 (04) ◽  
pp. 978-989 ◽  
Author(s):  
Fred W. Huffer

Suppose that pulses arrive according to a Poisson process of rate λ with the duration of each pulse independently chosen from a distribution F having finite mean. Let X(t) be the shot noise process formed by the superposition of these pulses. We consider functionals H(X) of the sample path of X(t). H is said to be L-superadditive if for all functions f and g. For any distribution F for the pulse durations, we define H(F) = EH(X). We prove that if H is L-superadditive and for all convex functions ϕ, then . Various consequences of this result are explored.


2021 ◽  
Vol 58 (2) ◽  
pp. 216-229
Author(s):  
Yanbo Ren ◽  
Congbian Ma

Let ɣ and Φ1 be nondecreasing and nonnegative functions defined on [0, ∞), and Φ2 is an N -function, u, v and w are weights. A unified version of weighted weak type inequality of the formfor martingale maximal operators f ∗ is considered, some necessary and su@cient conditions for it to hold are shown. In addition, we give a complete characterization of three-weight weak type maximal inequality of martingales. Our results generalize some known results on weighted theory of martingale maximal operators.


Risks ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 63
Author(s):  
Yiqing Chen

We investigate a shot noise process with subexponential shot marks occurring at renewal epochs. Our main result is a precise asymptotic formula for its tail probability. In doing so, some recent results regarding sums of randomly weighted subexponential random variables play a crucial role.


1990 ◽  
Vol 27 (3) ◽  
pp. 671-683 ◽  
Author(s):  
L. Liu ◽  
B. R. K. Kashyap ◽  
J. G. C. Templeton

By using a shot noise process, general results on system size in continuous time are given both in transient state and in steady state with discussion on some interesting results concerning special cases. System size before arrivals is also discussed.


1987 ◽  
Vol 24 (4) ◽  
pp. 978-989 ◽  
Author(s):  
Fred W. Huffer

Suppose that pulses arrive according to a Poisson process of rate λ with the duration of each pulse independently chosen from a distribution F having finite mean. Let X(t) be the shot noise process formed by the superposition of these pulses. We consider functionals H(X) of the sample path of X(t). H is said to be L-superadditive if for all functions f and g. For any distribution F for the pulse durations, we define H(F) = EH(X). We prove that if H is L-superadditive and for all convex functions ϕ, then . Various consequences of this result are explored.


Sign in / Sign up

Export Citation Format

Share Document