On the stability of shear flows with bottom topography

2016 ◽  
Vol 10 ◽  
pp. 651-659
Author(s):  
S. Sridevi ◽  
V. Ganesh
1961 ◽  
Vol 10 (3) ◽  
pp. 430-438 ◽  
Author(s):  
C. C. Lin

By applying the method of initial values to the theory of stability of shear flows, Case has recently found certain results which are in apparent conflict with those obtained by the theory of normal modes. It is shown how these differences may be reconciled. Some new features in the theory of normal modes are also brought out. The relative merits of the two theories are compared.


2011 ◽  
Vol 26 (1-4) ◽  
pp. 381-389
Author(s):  
R. Martins ◽  
J. P. Casquilho

1995 ◽  
Vol 303 ◽  
pp. 203-214 ◽  
Author(s):  
Charles Knessl ◽  
Joseph B. Keller

The stability or instability of various linear shear flows in shallow water is considered. The linearized equations for waves on the surface of each flow are solved exactly in terms of known special functions. For unbounded shear flows, the exact reflection and transmission coefficients R and T for waves incident on the flow, are found. They are shown to satisfy the relation |R|2= 1+ |T|2, which proves that over reflection occurs at all wavenumbers. For flow bounded by a rigid wall, R is found. The poles of R yield the eigenvalue equation from which the unstable mides can be found. For flow in a channel, with two rigid walls, the eigenvalue equation for the modes is obtained. The results are compared with previous numerical results.


Author(s):  
Sharath Jose ◽  
Rama Govindarajan

Small variations introduced in shear flows are known to affect stability dramatically. Rotation of the flow system is one example, where the critical Reynolds number for exponential instabilities falls steeply with a small increase in rotation rate. We ask whether there is a fundamental reason for this sensitivity to rotation. We answer in the affirmative, showing that it is the non-normality of the stability operator in the absence of rotation which triggers this sensitivity. We treat the flow in the presence of rotation as a perturbation on the non-rotating case, and show that the rotating case is a special element of the pseudospectrum of the non-rotating case. Thus, while the non-rotating flow is always modally stable to streamwise-independent perturbations, rotating flows with the smallest rotation are unstable at zero streamwise wavenumber, with the spanwise wavenumbers close to that of disturbances with the highest transient growth in the non-rotating case. The instability critical rotation number scales inversely as the square of the Reynolds number, which we demonstrate is the same as the scaling obeyed by the minimum perturbation amplitude in non-rotating shear flow needed for the pseudospectrum to cross the neutral line. Plane Poiseuille flow and plane Couette flow are shown to behave similarly in this context.


Author(s):  
Zhanhong Wan ◽  
Saihua Huang ◽  
Zhilin Sun ◽  
Zhenjiang You

Purpose – The present work is devoted to the numerical study of the stability of shallow jet. The effects of important parameters on the stability behavior for large scale shallow jets are considered and investigated. Connections between the stability theory and observed features reported in the literature are emphasized. The paper aims to discuss these issues. Design/methodology/approach – A linear stability analysis of shallow jet incorporating the effects of bottom topography, bed friction and viscosity has been carried out by using the shallow water stability equation derived from the depth averaged shallow water equations in conjunction with both Chézy and Manning resistance formulae. Effects of the following main factors on the stability of shallow water jets are examined: Rossby number, bottom friction number, Reynolds number, topographic parameters, base velocity profile and resistance model. Special attention has been paid to the Coriolis effects on the jet stability by limiting the rotation number in the range of Ro∈[0, 1.0]. Findings – It is found that the Rossby number may either amplify or attenuate the growth of the flow instability depending on the values of the topographic parameters. There is a regime where the near cancellation of Coriolis effects due to other relevant parameters influences is responsible for enhancement of stability. The instability can be suppressed by the bottom friction when the bottom friction number is large enough. The amplification rate may become sensitive to the relatively small Reynolds number. The stability region using the Manning formula is larger than that using the Chézy formula. The combination of these effects may stabilize or destabilize the shallow jet flow. These results of the stability analysis are compared with those from the literature. Originality/value – Results of linear stability analysis on shallow jets along roughness bottom bed are presented. Different from the previous studies, this paper includes the effects of bottom topography, Rossby number, Reynolds number, resistance formula and bed friction. It is found that the influence of Reynolds number on the stability of the jet is notable for relative small value. Therefore, it is important to experimental investigators that the viscosity should be considered with comparison to the results from inviscid assumption. In contrast with the classical analysis, the use of multi-parameters of the base velocity and topographic profile gives an extension to the jet stability analysis. To characterize the large scale motion, besides the bottom friction as proposed in the related literature, the Reynolds number Re, Rossby number Ro, the topographic parameters and parameters controlling base velocity profile may also be important to the stability analysis of shallow jet flows.


1969 ◽  
Vol 8 (7) ◽  
pp. 821-826 ◽  
Author(s):  
Mihir B. Banerjee
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document