Vibration based damage localization using MEMS on a suspension bridge model

2013 ◽  
Vol 12 (6) ◽  
pp. 679-694 ◽  
Author(s):  
Marco Domaneschi ◽  
Maria Pina Limongelli ◽  
Luca Martinelli
2016 ◽  
Vol 11 (1) ◽  
pp. 11-21 ◽  
Author(s):  
Marco Domaneschi ◽  
Maria Pina Limongelli ◽  
Luca Martinelli

The paper focuses on extending a recently proposed damage localization method, previously devised for structures subjected to a known input, to ambient vibrations induced by an unknown wind excitation. Wind induced vibrations in long-span bridges can be recorded without closing the infrastructure to traffic, providing useful data for health monitoring purposes. One major problem in damage identification of large civil structures is the scarce data recorded on damaged real structures. A detailed finite element model, able to correctly and reliably reproduce the real structure behavior under ambient excitation can be an invaluable tool, enabling the simulation of several different damage scenarios to test the performance of any monitoring system. In this work a calibrated finite element model of an existing long-span suspension bridge is used to simulate the structural response to wind actions. Several damage scenarios are simulated with different location and severity of damage to check the sensitivity of the adopted identification method. The sensitivity to the length and noise disturbances of recorded data are also investigated.


2004 ◽  
Vol 14 (03) ◽  
pp. 927-950 ◽  
Author(s):  
MÁRIO S. T. DE FREITAS ◽  
RICARDO L. VIANA ◽  
CELSO GREBOGI

We consider the dynamics of the first vibrational mode of a suspension bridge, resulting from the coupling between its roadbed (elastic beam) and the hangers, supposed to be one-sided springs which respond only to stretching. The external forcing is due to time-periodic vortices produced by impinging wind on the bridge structure. We have studied some relevant dynamical phenomena in such a system, like periodic and quasiperiodic responses, chaotic motion, and boundary crises. In the weak dissipative limit the dynamics is mainly multistable, presenting a variety of coexisting attractors, both periodic and chaotic, with a highly involved basin of attraction structure.


2012 ◽  
Vol 204-208 ◽  
pp. 2019-2027
Author(s):  
Zhi Wei Chen ◽  
You Lin Xu ◽  
Kai Yuen Wong

Many long-span suspension bridges have been built around the world, and many of them carry both of rail and road traffic. Fatigue assessment shall be performed to ensure the safety and functionality of these bridges. This paper first briefly introduces the main procedure of fatigue assessment recommended by British Standard, and then it is applied to the Tsing Ma suspension bridge in Hong Kong. Vehicle spectrum of trains and road vehicles are investigated based on the measurement data of trains and road vehicles recorded by the Structural Health Monitoring System (SHMS) installed on the bridge so that fatigue damage assessment will be more realistic and accurate. Stress influence lines corresponding to railway tracks and highway lanes are established based on a complex finite element bridge model so that an accurate vehicle-induced stress response can be estimated based on them. The fatigue-critical locations for different type of bridge components are identified in terms of the maximum stress range due to a standard train running over the bridge. Finally, the fatigue life at the fatigue-critical locations due to both trains and road vehicles are estimated, and the result indicates the bridge is in very good condition.


Sign in / Sign up

Export Citation Format

Share Document