polynomial stability
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 30)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Dmytro Baidiuk ◽  
Lassi Paunonen

AbstractIn this paper we present new results on the preservation of polynomial stability of damped wave equations under addition of perturbing terms. We in particular introduce sufficient conditions for the stability of perturbed two-dimensional wave equations on rectangular domains, a one-dimensional weakly damped Webster’s equation, and a wave equation with an acoustic boundary condition. In the case of Webster’s equation, we use our results to compute explicit numerical bounds that guarantee the polynomial stability of the perturbed equation.


Author(s):  
Mohammad AKIL ◽  
Zhuangyi Liu

In this paper, we consider the stabilization of the generalized Rao-Nakra beam equation, which consists of four wave equations for the longitudinal displacements and the shear angle of the top and bottom layers and one Euler-Bernoulli beam equation for the transversal displacement. Dissipative mechanism are provided through viscous damping for two displacements. The location of the viscous damping are divided into two groups, characterized by whether both of the top and bottom layers are directly damped or otherwise. Each group consists of three cases. We obtain the necessary and sufficient conditions for the cases in group two to be strongly stable. Furthermore, polynomial stability of certain orders are proved. The cases in group one are left for future study.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 235
Author(s):  
Rovana Boruga(Toma) ◽  
Mihail Megan ◽  
Daniela Maria-Magdalena Toth

The aim of this paper is to present some integral characterizations for the concept of uniform stability with growth rates in Banach spaces. In this sense, we prove necessary and sufficient conditions (of Barbashin and Datko type) for an evolution operator to be uniform h- stable. As particular cases of this notion, we obtain four characterizations for uniform exponential stability and two characterizations for uniform polynomial stability.


2021 ◽  
Vol 40 (6) ◽  
Author(s):  
Z. Liu ◽  
R. Quintanilla

AbstractThis paper is devoted to studying the linear system of partial differential equations modelling a one-dimensional thermo-porous-elastic problem with microtemperatures in the context of the dual-phase-lag heat conduction. Existence, uniqueness, and exponential decay of solutions are proved. Polynomial stability is also obtained in the case that the relaxation parameters satisfy a certain equality. Our arguments are based on the theory of semigroups of linear operators.


Author(s):  
Jonathan Leake

AbstractIn 2009, Borcea and Brändén characterized all linear operators on multivariate polynomials which preserve the property of being non-vanishing (stable) on products of prescribed open circular regions. We give a representation theoretic interpretation of their findings, which generalizes and simplifies their result and leads to a conceptual unification of many related results in polynomial stability theory. At the heart of this unification is a generalized Grace’s theorem which addresses polynomials whose roots are all contained in some real interval or ray. This generalization allows us to extend the Borcea–Brändén result to characterize a certain subclass of the linear operators which preserve such polynomials.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 182
Author(s):  
Tímea Melinda Személy Fülöp ◽  
Mihail Megan ◽  
Diana Ioana Borlea(Pătraşcu)

The main purpose of this paper is to study a more general concept of uniform stability in mean in which the uniform behavior in the classical sense is replaced by a weaker requirement with respect to some probability measure. This concept includes, as particular cases, the concepts of uniform exponential stability in mean and uniform polynomial stability in mean. Extending techniques employed in the deterministic case, we obtain variants of some results for the general cases of uniform stability in mean for stochastic skew-evolution semiflows in Banach spaces.


Sign in / Sign up

Export Citation Format

Share Document