scholarly journals Material-orientation optimization for tailoring thermal deformation of laminated composite shell structures using a parameter-free approach

2019 ◽  
Vol 13 (4) ◽  
pp. JAMDSM0083-JAMDSM0083
Author(s):  
Masatoshi SHIMODA ◽  
Yoshiaki MURAMATSU ◽  
Motoki UMEMURA
Author(s):  
Cho W. S. To ◽  
Bin Wang

Abstract The investigation reported in this paper is concerned with the prediction of geometrically large nonlinear responses of laminated composite shell structures under transient excitations by employing the hybrid strain based flat triangular laminated composite shell finite element presented here. Large deformation of finite strain and finite rotation are considered. The finite element has eighteen degrees-of-freedom which encompass the important drilling degree-of-freedom at every node. It is hinged on the first order shear deformable lamination theory. Various laminated composite shell structures have been studied and for brevity only two are presented here. It is concluded that the element proposed is very accurate and efficient. Shear locking has not appeared in the results obtained thus far. There is no zero energy mode detected in the problems studied. For nonlinear dynamic response computations, the full structural system has to be considered if accurate results are required.


Author(s):  
C. W. S. To ◽  
B. Wang

Abstract The prediction and analysis of response of laminated composite shell structures under nonstationary random excitation is of considerable interest to design engineers in aerospace and automobile engineering fields. However, it seems that there is no known comprehensive published work on such an analysis that employs the versatile finite element method. Thus, the main focus of the investigation reported in this paper is the application of the hybrid strain-based laminated composite flat triangular shell finite element, that has been developed by the authors, for the analysis of laminated composite shell structures under a relatively wide class of nonstationary random excitations. Representative results of a simply-supported laminated composite cylindrical panel subjected to a point nonstationary random excitation are included.


2018 ◽  
Vol 15 (07) ◽  
pp. 1850060 ◽  
Author(s):  
Quoc-Hoa Pham ◽  
The-Van Tran ◽  
Tien-Dat Pham ◽  
Duc-Huynh Phan

This paper proposes an improvement of the MITC3 shell finite element to analyze of laminated composite shell structures. In order to enhance the accuracy and convergence of MITC3 element, an edge-based smoothed finite element method (ES-FEM) is applied to the derivation of the membrane, bending and shear stiffness terms of the MITC3 element, named ES-MICT3. In the ES-FEM, the smoothed strain is calculated in the domain that constructed by two adjacent MITC3 triangular elements sharing an edge. On a curved geometry of shell models, two adjacent MITC3 triangular elements may not be placed on the same plane. In this case, the edge-based smoothed strain can be performed on the virtual plane based on strain transformation matrices between the global coordinate and this virtual coordinate. Furthermore, a simple modification coefficient is chosen to be [Formula: see text] times the maximum diagonal value of the element stiffness matrix at the zero drilling degree of freedom to avoid the drill rotation locking when all elements meeting at a node are coplanar. The numerical examples demonstrated that the proposed method achieves the high accuracy in comparison to others existing elements in the literature.


Sign in / Sign up

Export Citation Format

Share Document