Journal of Reinforced Plastics and Composites
Latest Publications


TOTAL DOCUMENTS

4249
(FIVE YEARS 206)

H-INDEX

66
(FIVE YEARS 6)

Published By Sage Publications

1530-7964, 0731-6844

2022 ◽  
pp. 073168442110548
Author(s):  
Ang Li ◽  
Rahul Vallabh ◽  
Philip D Bradford ◽  
David Kim ◽  
Abdel-Fattah M Seyam

The development of hull material with ideal properties to meet all the operation requirements has posed the greatest challenge to flying the airship at high altitude for extended periods. Materials developed in our previous study with a laminated structure achieved high strength-to-weight ratio and excellent gas barrier property at a relatively low total weight. To optimize this novel design and obtain a more comprehensive understanding of the laminate properties, a parametric study involving lamination process parameters (temperature and time), and laminate structural parameter (reinforcement fabric construction), was conducted. The effects of lamination parameters on tensile, peel, tear and helium permeability tests were carried out to assess the laminates. It was found that the tensile strength of the laminate is predominantly determined by the fabric reinforcement material properties. The peel and tear strength results showed that increasing the lamination temperature from 185 °C to 200 °C improved respective strength values. Additionally, the analysis of failure modes and tear propagation suggested that laminate samples with progressive failure have better tear resistant property over those with brutal failure. Extremely low helium permeability was achieved, yet the gas barrier property was not affected by the lamination process parameters and fabric type.


2022 ◽  
pp. 073168442110666
Author(s):  
Biruk F Nega ◽  
Robert S Pierce ◽  
Linlin Liu ◽  
Xiaosu Yi ◽  
Xiaoling Liu

This work investigates the effect of preform compaction on the mechanical performance and flow-induced fibre alignment of carbon fibre reinforced Sheet Moulding Compounds (SMCs). Two groups of panels have been compression moulded from reclaimed carbon fibre tows in vinyl-ester resin with low (0.5 MPa) and high (10 MPa) preform compaction pressure Additionally, a low-cost fibre orientation analysis method has been further improved in terms of reliability, and a novel flow assessment method has been developed for carbon fibre SMCs. This approach revealed greater fibre alignment with the flow direction in the lower faces of panels as a result of greater contact time with the heated mould and a lower charge viscosity at the time of pressing. As expected, greater fibre alignment in the flow direction was observed outside the initial charge coverage area in both types of panels, where the flow was greatest. Due to additional fibre flow during the high-pressure compaction stage, the mean degree of flow alignment in the high compaction panel was 47% higher than that of the low compaction panel. Improvements in the tensile stiffness (8%) and strength (32%) were also observed as a result of the high-pressure compaction stage and associated flow alignment.


2022 ◽  
pp. 073168442110602
Author(s):  
Rui Xiao ◽  
Wang Wang ◽  
Jiaqi Shi ◽  
Jun Xiao

While Automated Fiber Placement (AFP) of thermoset matrix composites are widely used in the aviation industry, there is little conclusive research on the relationship between the physical model of bonding interface formation process and the actual bonding strength between prepreg layers formed in AFP process. Although massive amounts of experimental data on prepreg tack have been achieved from existing research, engineers are unable to use these data as a decisive criterion in choosing process parameters. In this research, a prepreg layup physical model based on reptation model and viscoelastic mechanical model is built, in which the bonding interface formation process is divided into two stages, namely, diffusion and viscous stage. Layup-peeling experiments are conducted via a special designed high-speed layup experimental platform so that practical AFP process parameters can be imitated, and a logarithmic curve of layup velocity-peeling energy under different layup pressure is achieved. The slope of the logarithmic curve and the surface morphology of the sample after peeling prove the correctness of the established model. Simultaneously, the experimental data proves that when prepreg is peeled off, the transition from the cohesive failure mode to the interface failure mode occurs at the laying speed between 100 mm/s and 200 mm/s. These results can be used as a reference for choosing AFP process parameters to realize the balance between good bonding quality and harmless separation of adjacent prepreg layers.


2021 ◽  
pp. 073168442110635
Author(s):  
Jing Zhu ◽  
Feng C Lang ◽  
Shi Y Wang ◽  
Zhuo Li ◽  
Yong M Xing

The mechanical properties of the interphase play a key role in determining the overall performance of carbon fiber reinforced polymer (CFRP) composite materials. For this reason, it is important to develop a method to easily and precisely investigate the mechanical performance of the interphase of CFRP materials. In this work, the surface topography of the CFRP material was examined using scanning probe microscopy (SPM), which revealed the polished flat sample can meet the requirements of the nanoindentation testing. The local mechanical performance of the interphase of the CFRP was determined using nanoindentation based on the continuous stiffness measurement (CSM) method. The results show that the size of the interphase between the carbon fiber and the matrix is about 1.5 μm, and the corresponding modulus and hardness values were estimated to be 5–11 and 0.4–3.3 GPa, respectively, considering the fiber-bias effects. Mapping of the local mechanical properties of a selected area revealed that nanoindentation reproduced excellently the surface topography and characterized precisely the properties of the interphase between the carbon fibers and the matrix.


2021 ◽  
pp. 073168442110651
Author(s):  
Wei Chen ◽  
Yiliang Qin ◽  
Xingyang He ◽  
Ying Su ◽  
Jun Wang

Highly effective electromagnetic interference shielding materials with light-weight feature are urgently demanded for releasing electromagnetic pollution. In this study, the hollow glass spheres were coated with silver particles to produce electrically conductive microspheres. The Carbon fiber/silver-coated hollow glass spheres (Ag@HGMs)/epoxy composites were manufactured by composites liquid molding process. The electromagnetic interference shielding properties of the composites were investigated in the X-band (8.2–12.4 GHz) range. The Ag@HGMs play a role in filling up the vacancy of the conductive network of carbon fibers in the composites, which not only form new conductive pathways but also act as bridges to connect CFs and provide additional channels for the electron transfer within the composites thus improving the electrical conductivity. The total shielding effectiveness (SET) increases with increasing Ag@HGMs loadings and the maximum SET is high as 88.1 dB. The increased SET dominated by absorption loss SEA is attributed to the high conductivity and multilayer construction of carbon fiber veil. The maximum specific SE of the carbon fiber/Ag@HGMs/epoxy composites can achieve 128.8 dB cm3/g, simultaneously the tensile strength and modulus can reach 95.6 MPa and 2.71 GPa, which provides a facile and promising strategy for designing and developing light-weight and high performance electromagnetic interference shielding materials.


2021 ◽  
pp. 073168442110533
Author(s):  
R Várdai ◽  
M Ferdinánd ◽  
T Lummerstorfer ◽  
C Pretschuh ◽  
M Jerabek ◽  
...  

Polypropylene (PP) hybrid composites were prepared by the combination of three reinforcing (carbon, glass, and wood) and a synthetic (PVA) fiber. Tensile and impact testing, acoustic emission measurements, and scanning electron microscopy (SEM) were used for the characterization of the composites as well as to follow deformation and failure processes. The results obtained prove that the novel concept of using synthetic fibers for impact modification can be applied successfully also with PVA fibers. The extent of improvement in impact strength depends on fiber type and content, but also on interfacial adhesion which strongly influences the local deformation processes occurring around the fibers during fracture. Both the reinforcing and the synthetic fibers take part in these processes and contribute to energy consumption. Debonding and the subsequent plastic deformation of the matrix consumes energy the most efficiently, but the fracture of the PVA fibers also requires energy; thus, PVA fibers improve impact resistance both at poor and good adhesion. This approach allows the design of materials for structural applications; the combination of a stiffness of 4–6 GPa and an impact resistance of 20–25 kJ/m2 exceeds the properties of most PP composites available on the market.


2021 ◽  
pp. 073168442110584
Author(s):  
Madavan Prabakaran ◽  
Siddharthan Arjunan

Fibre architecture of glass fibre (GF) reinforced polymer composites has a major impact on the mechanical properties for structural applications. In this study, a novel continuous glass fibre non-woven GF mat based on Spirograph art pattern is laid using a customized mechanical system. Spirograph-based continuous glass fibre non-woven (SNW) mat of different patterns was prepared and GF laminate epoxy composites were fabricated with the aim of achieving quasi-isotropic mechanical properties. The samples were cut to dimensions of test specimens from various identical locations symmetrically from a circular-shaped SNW composite laminates which were subjected to flexural, impact, shear and modified compression with anti-buckling tests. One particular SNW pattern composite laminate exhibited 40.82% better impact and 49.01% better shear resistance than commercial 0°/90° woven roving mat composite. The developed SNW laminate composite had quasi-isotropic fibre orientation and better mechanical properties without any stitching and interlacing as in case of woven fibre laminate composite.


2021 ◽  
pp. 073168442110517
Author(s):  
Hong-Joon Choi ◽  
Min-Jae Kim ◽  
Doo-Yeol Yoo

This study was conducted to evaluate the curing temperature effect on the mechanical properties of high-strength strain-hardening cementitious composite (SHCC) containing waste supplementary cementitious materials (SCMs) and polyethylene (PE) fibers. High-strength SHCC is developed to extend the strain-hardening interval by simultaneously inducing multiple cracks and ensuring the durability and strength of high-strength concrete. The starting point of this study was to enhance the tensile performance and durability of high-strength SHCC by utilizing various SCMs. In addition, the optimal curing conditions were investigated to derive the maximum material potential of each SCM, which aims to advance the performance of high-strength SHCC. The temperatures employed for the curing process were 20, 40, and 90°C. Moreover, ground granulated blast-furnace slag (GGBS), silica fume (SF), and cement kiln dust (CKD), were used as a partial replacement for cement to determine the best mix for achieving optimal tensile performance. Four mix designs were prepared, including a plain test specimen composed entirely of cement as binder; therefore, a total of 12 types of specimens were set considering the three curing temperatures. A compressive strength test was conducted with cube specimens, and a direct tensile test was performed with dog-bone-shaped specimens. Derivative thermogravimetry (DTG) and energy dispersive X-ray spectroscopy (EDS) mapping were conducted to identify the microstructures. The SF-containing SHCC cured at 90°C exhibited the best tensile performance in terms of deformability and energy absorption capacity by achieving the highest strain capacity of 4.37% and g-value of 294.5 kJ/m3. In addition, the performance of each specimen was reconfirmed based on the DTG, EDS mapping, and crack pattern results. Through these results, the optimal SCM mixing amount and curing conditions that led to noticeable performance improvement of high-strength SHCC were identified.


2021 ◽  
pp. 073168442110541
Author(s):  
Yuxiao He ◽  
Junxia Jiang ◽  
Weiwei Qu ◽  
Yinglin Ke

For automated fiber placement onto molds with complex surfaces, uneven compaction pressure distribution limits tows number in a single sequence and affects layup quality. Compaction roller has a direct influence on the pressure distribution, but the relationship between the two has not been widely explored. In this paper, the segmented compaction roller is used, and a theoretical model of compaction pressure distribution for layup onto general surfaces is established by analyzing the contact between the roller and prepreg layers, followed by experimental validation. Based on the model, single-point pressure uniformity and whole-path pressure uniformity are proposed to quantitatively evaluate the pressure distribution. Furthermore, pressure distribution and pressure uniformity of segmented roller and common roller are compared, as well as the influence of the two pressure distribution on layup quality. The results show that the established model can predict pressure distribution and provide a basis for analyzing layup defects, and segmented rollers apply evener compaction pressure and help to improve layup quality.


2021 ◽  
pp. 073168442110517
Author(s):  
Muhammad Helmi Abdul Kudus ◽  
Mani Maran Ratnam ◽  
Hazizan Md Akil

Natural fiber-reinforced composites are promising alternative materials in the manufacture of modern moderate-to-high-technology products. However, their heterogeneous structure causes processing defects uncommon with metallic parts. Drilling of composites is an essential machining process to facilitate assembly and fastening of composite components. The occurrence of delamination damage around the drilled hole and fiber pull-out within the hole are critical factors that affect the performance of these parts when assembled. A new image processing method using digital scanning and tracing for characterizing delamination and fiber pull-out induced by drilling has been developed to address the limitations in the existing methods of quantifying drilled hole qualities. The capability of the proposed method as a delamination and fiber pull-out assessment tool was verified using simulated and real images of drilled holes. The method was also used to investigate the effect of drilling parameters on delamination and fiber pull-out in jute reinforced epoxy composite produced via resin transfer molding. The results show that drill bit diameter, feed rate, and spindle speed have varying effects on both delamination areas and fiber pull-out within the drilled hole.


Sign in / Sign up

Export Citation Format

Share Document