scholarly journals Fuzzy Inverse Model of Magnetorheological Dampers for Semi-Active Vibration Control of an Eleven-Degrees of Freedom Suspension System

2011 ◽  
Vol 5 (7) ◽  
pp. 1485-1497 ◽  
Author(s):  
Seiyed Hamid ZAREH ◽  
Amir Ali Akbar KHAYYAT
2007 ◽  
Vol 04 (01) ◽  
pp. 141-162 ◽  
Author(s):  
V. BALAMURUGAN ◽  
B. MANIKANDAN ◽  
S. NARAYANAN

This paper presents a higher order — field consistent — piezolaminated 8-noded plate finite element with 36 elastic degrees-of-freedom per element and two electric degrees-of-freedom per element, one each for the piezoelectric sensor and actuator. The higher order plate theory used satisfies the stress and displacement continuity at the interface of the composite laminates and has zero shear stress on the top and bottom surfaces. The transverse shear deformation is of a higher order represented by the trigonometric functions allowing us to avoid the shear correction factors. In order to maintain the field consistency, the inplane displacements, u and v are interpolated using linear shape functions, the transverse displacement w is interpolated using hermite cubic interpolation function, while rotations θx and θy are interpolated using quadratic interpolation function. The element is developed to include stiffness and the electromechanical coupling of the piezoelectric sensor/actuator layers. The active vibration control performance of the piezolaminated smart composite plates has been studied by modeling them with the above element and applying various control strategies.


Sign in / Sign up

Export Citation Format

Share Document