ON MECHANICS OF UNSTEADY CUTTING PROCESS WITH VARYING UNDEFORMED CHIP THICKNESS : 3RD REPORT : INFLUENCES OF STRAIN HARDENING OF WORK MATERIALS

1974 ◽  
Vol 17 (112) ◽  
pp. 1356-1364
Author(s):  
Mikio OGURI ◽  
Hiroshi FUJII ◽  
Hiromichi MORI ◽  
Tadao OTA
2006 ◽  
Vol 532-533 ◽  
pp. 753-756 ◽  
Author(s):  
Jun Zhao ◽  
Xing Ai ◽  
Zuo Li Li

The Finite Element Method (FEM) has proven to be an effective technique to investigate cutting process so as to improve cutting tool design and select optimum cutting conditions. The present work focuses on the FEM simulation of cutting forces in high speed cutting by using an orthogonal cutting model with variant undeformed chip thickness under plane-strain condition to mimic intermittent cutting process such as milling. High speed cutting of 45%C steel using uncoated carbide tools are simulated as the application of the proposed model. The updated Lagrangian formulation is adopted in the dynamic FEM simulation in which the normalized Cockroft and Latham damage criterion is used as the ductile fracture criterion. The simulation results of cutting force components under different cutting conditions show that both the thrust cutting force and the tangential cutting force increase with the increase in undeformed chip thickness or feed rate, whereas decrease with the increase in cutting speed. Some important aspects of modeling the high speed cutting are discussed as well to expect the future work in FEM simulation.


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 924
Author(s):  
Xian Wu ◽  
Li Liu ◽  
Mingyang Du ◽  
Jianyun Shen ◽  
Feng Jiang ◽  
...  

Micro milling is widely used to manufacture micro parts due to its obvious advantages. The minimum undeformed chip thickness, the effective rake angle, and size effect are the typical characteristics and closely related to each other in micro milling. In this paper, the averaging method is proposed to quantitatively estimate the effective rake angle in the cutting process. The minimum undeformed chip thickness is explained based on the effective rake angle and determined to be 0.17 rn (tool cutting edge radius). Then, micro milling experiment was conducted to study the effect of the minimum undeformed chip thickness. It is found that the minimum undeformed chip thickness results in the unstable cutting process, the uneven peaks on cutting force signal, and the dense characteristic frequency distribution on frequency domain signal. The dominant ploughing effect induces the great specific cutting energy and the deteriorated surface roughness due to the minimum undeformed chip thickness.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2786-2791 ◽  
Author(s):  
JAE HWAN SON ◽  
CHANG WOO HAN ◽  
SUN IL KIM ◽  
HEE CHUL JUNG ◽  
YOUNG MOON LEE

Whirling is a cutting process in which a series of cutting edges remove material by turning over the rotating workpiece. In this process, the whirling ring with a number of cutting teeth combined with the rotation and advancement of workpiece, produces pitches of worm. Mechanics of chip formation of the process, however, has not been fully estabilished. To estimate the cutting force during the process, the kinematics and the maximum undeformed chip thickness to be removed by each cutting edge should be thoroughly analyzed. In this study, using the recently developed model of undeformed chip thickness and the DEFORM software, cutting forces of the whirling process are estimated. The effects of cutting forces on tool are analyzed using the ADAMS software. The validity of the simulations has been verified with a series of cutting experiments.


2004 ◽  
Vol 47 (1) ◽  
pp. 2-7 ◽  
Author(s):  
Hisanobu TERAI ◽  
Minghui HAO ◽  
Koichi KIKKAWA ◽  
Yoshio MIZUGAKI

Sign in / Sign up

Export Citation Format

Share Document