Finite Element Analysis of Cutting Forces in High Speed Machining

2006 ◽  
Vol 532-533 ◽  
pp. 753-756 ◽  
Author(s):  
Jun Zhao ◽  
Xing Ai ◽  
Zuo Li Li

The Finite Element Method (FEM) has proven to be an effective technique to investigate cutting process so as to improve cutting tool design and select optimum cutting conditions. The present work focuses on the FEM simulation of cutting forces in high speed cutting by using an orthogonal cutting model with variant undeformed chip thickness under plane-strain condition to mimic intermittent cutting process such as milling. High speed cutting of 45%C steel using uncoated carbide tools are simulated as the application of the proposed model. The updated Lagrangian formulation is adopted in the dynamic FEM simulation in which the normalized Cockroft and Latham damage criterion is used as the ductile fracture criterion. The simulation results of cutting force components under different cutting conditions show that both the thrust cutting force and the tangential cutting force increase with the increase in undeformed chip thickness or feed rate, whereas decrease with the increase in cutting speed. Some important aspects of modeling the high speed cutting are discussed as well to expect the future work in FEM simulation.

2013 ◽  
Vol 579-580 ◽  
pp. 202-207
Author(s):  
Guo He Li ◽  
Hou Jun Qi ◽  
Bing Yan

For the high speed cutting process of hardened 45 steel (45HRC), a finite element simulation of cutting deformation, cutting force and cutting temperature is finished with the large general finite element software ABAQUS. Through the building of geometry model, material model and heat conduction model, also the determination of boundary conditions, separation rule and friction condition, a thermal mechanical coupling finite element model of high speed cutting for hardened 45 steel is built. The serrated chip, cutting force and cutting temperature can be predicted. The comparison of experiment and simulation shows the validity of the model. The influence of cutting parameters on cutting process is investigated by the simulation under different cutting depthes and rake angles. The results show that as the increase of rake angle, the segment degree, cutting force and cutting temperature decrease. But the segment degree, also the cutting force and cutting temperature increase with the increase of cutting depth. This study is useful for the selection of cutting parameters of hardened steel.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2786-2791 ◽  
Author(s):  
JAE HWAN SON ◽  
CHANG WOO HAN ◽  
SUN IL KIM ◽  
HEE CHUL JUNG ◽  
YOUNG MOON LEE

Whirling is a cutting process in which a series of cutting edges remove material by turning over the rotating workpiece. In this process, the whirling ring with a number of cutting teeth combined with the rotation and advancement of workpiece, produces pitches of worm. Mechanics of chip formation of the process, however, has not been fully estabilished. To estimate the cutting force during the process, the kinematics and the maximum undeformed chip thickness to be removed by each cutting edge should be thoroughly analyzed. In this study, using the recently developed model of undeformed chip thickness and the DEFORM software, cutting forces of the whirling process are estimated. The effects of cutting forces on tool are analyzed using the ADAMS software. The validity of the simulations has been verified with a series of cutting experiments.


Author(s):  
Xiangqin Zhang ◽  
Xueping Zhang ◽  
A. K. Srivastava

To predict the cutting forces and cutting temperatures accurately in high speed dry cutting Ti-6Al-4V alloy, a Finite Element (FE) model is established based on ABAQUS. The tool-chip-work friction coefficients are calculated analytically using the measured cutting forces and chip morphology parameter obtained by conducting the orthogonal (2-D) machining tests. It reveals that the friction coefficients between tool-work are 3∼7 times larger than that between tool-chip, and the friction coefficients of tool-chip-work vary with feed rates. The analysis provides a better reference for the tool-work-chip friction coefficients than that given by literature empirically regardless of machining conditions. The FE model is capable of effectively simulating the high speed dry cutting process of Ti-6Al-4V alloy based on the modified Johnson-Cook model and tool-work-chip friction coefficients obtained analytically. The FE model is further validated in terms of predicted forces and the chip morphology. The predicted cutting force, thrust force and resultant force by the FE model agree well with the experimentally measured forces. The errors in terms of the predicted average value of chip pitch and the distance between chip valley and chip peak are smaller. The FE model further predicts the cutting temperature and residual stresses during high speed dry cutting of Ti-6Al-4V alloy. The maximum tool temperatures exist along the round tool edge, and the residual stress profiles along the machined surface are hook-shaped regardless of machining conditions.


2015 ◽  
Vol 9 (6) ◽  
pp. 775-781
Author(s):  
Norfariza Wahab ◽  
◽  
Yumi Inatsugu ◽  
Satoshi Kubota ◽  
Soo-Young Kim ◽  
...  

In recent times, numerical simulation techniques have been commonly used to estimate and predict machining parameters such as cutting forces, stresses, and temperature distribution. However, it is very difficult to estimate the flow stress of a workpiece and the friction characteristics at a tool/chip interface, particularly during a high-speed cutting process. The objective of this study is to improve the accuracy of the present method and simultaneously determine the characteristics of the flow stress of a workpiece and friction at the cutting edge under a high strain rate and temperature during the cutting process. In this study, the Johnson-Cook (JC) flow stress model is used as a function of strain, strain rate, and temperature. The friction characteristic was estimated by minimizing the difference between the predicted and measured results of principal force, thrust force, and shear angle. The shear friction equation was used to estimate the friction characteristics. Therefore, by comparing the measured values of the cutting forces with the predicted results from FEM simulations, an expression for workpiece flow stress and friction characteristics at the cutting edge during a high-speed cutting process was estimated.


2001 ◽  
Vol 5 (3) ◽  
pp. 323-340 ◽  
Author(s):  
F. Klocke ◽  
H.-W. Raedt ◽  
S. Hoppe

2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
S. Turchetta

Stone machining by diamond disk is a widespread process to manufacture standard products, such as tiles, slabs, and kerbs. Cutting force and energy may be used to monitor stone machining. Empirical models are required to guide the selection of cutting conditions. In this paper, the effects of cutting conditions on cutting force and cutting energy are related to the shape of the idealized chip thickness. The empirical models developed in this paper can be used to predict the variation of the cutting energy. Therefore these models can be used to guide the selection of cutting conditions. The chip generation and removal process has been quantified with the intention of assisting both the toolmaker and the stonemason in optimising the tool composition and cutting process parameters, respectively.


2006 ◽  
Vol 326-328 ◽  
pp. 1599-1602
Author(s):  
Bo Sung Shin

High-speed machining (HSM) is very useful method as one of the most effective manufacturing processes because it has excellent quality and dimensional accuracy for precision machining. Recently micromachining technologies of various functional materials with very thin walls are needed in the field of electronics, mobile telecommunication and semiconductors. However, HSM is not suitable for microscale thin-walled structures because of the lack of their structure stiffness to resist high-speed cutting force. A microscale thin wall machined by HSM shows the characteristics of the impact behavior because the high-speed cutting force works very shortly on the machined surface. We propose impact analysis model in order to predict the limit thickness of a very thin-wall and investigate its limit thickness of thin-wall manufactured by HSM using finite element method. Also, in order to verify the usefulness of this method, we will compare finite element analyses with experimental results and demonstrate some applications.


2010 ◽  
Vol 29-32 ◽  
pp. 1838-1843 ◽  
Author(s):  
Chun Zheng Duan ◽  
Hai Yang Yu ◽  
Yu Jun Cai ◽  
Yuan Yuan Li

As an advanced manufacturing technology which has been developed rapidly in recent years, high speed machining is widely applied in many industries. The chip formation during high speed machining is a complicated material deformation and removing process. In research area of high speed machining, the prediction of chip morphology is a hot and difficult topic. A finite element method based on the software ABAOUS which involves Johnson-Cook material model and fracture criterion was used to simulate the serrated chip morphology and cutting force during high speed cutting of AISI 1045 hardened steel. The serrated chip morphology and cutting force were observed and measured by high speed cutting experiment of AISI 1045 hardened steel. The effects of rake angle on cutting force, sawtooth degree and space between sawteeth were discussed. The investigation indicates that the simulation results are consistent with the experiments and this finite element simulation method presented can be used to predict the chip morphology and cutting force accurately during high speed cutting of hardened steel.


2014 ◽  
Vol 625 ◽  
pp. 378-383 ◽  
Author(s):  
Norfariza Wahab ◽  
Yumi Inatsugu ◽  
Satoshi Kubota ◽  
Soo Young Kim ◽  
Hiroyuki Sasahara

Nowadays, numerical simulation technique is very popular to estimate and predict the machining parameters such as cutting forces, stresses distribution, temperature and tool wear. The objective of this study is to determine the 0.45%C steel (JIS S45C) flow stress value under high strain rate and temperature. The Johnson and Cook (JC) material model is used as a constitutive equation to describe the high speed cutting process. Compression test and orthogonal cutting test were carried out in order to obtain the required parameters in JC model. Inverse calculation method was used to determine the strain rate and temperature dependency parameter based on several cutting conditions. As a result, validity of verification of method was completed and the flow stress of S45C had been evaluated.


Sign in / Sign up

Export Citation Format

Share Document