chip formation
Recently Published Documents


TOTAL DOCUMENTS

1063
(FIVE YEARS 200)

H-INDEX

60
(FIVE YEARS 7)

2022 ◽  
Vol 74 ◽  
pp. 14-27
Author(s):  
Zhengjian Wang ◽  
Xichun Luo ◽  
Jining Sun ◽  
Philipp Seib ◽  
Suttinee Phuagkhaopong ◽  
...  

JOM ◽  
2022 ◽  
Author(s):  
Ryan M. Khawarizmi ◽  
Jiawei Lu ◽  
Dinh S. Nguyen ◽  
Thomas R. Bieler ◽  
Patrick Kwon

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 189
Author(s):  
Bin Yang ◽  
Hongjian Wang ◽  
Kunkun Fu ◽  
Chonglei Wang

In the present work, an explicit finite element (FE) model was developed for predicting cutting forces and chip morphologies of polymers from the true stress–strain curve. A dual fracture process was used to simulate the cutting chip formation, incorporating both the shear damage failure criterion and the yield failure criterion, and considering the strain rate effect based on the Johnson–Cook formulation. The frictional behaviour between the cutting tool and specimen was defined by Coulomb’s law. Further, the estimated cutting forces and chip thicknesses at different nominal cutting depths were utilized to determine the fracture toughness of the polymer, using an existing mechanics method. It was found that the fracture toughness, cutting forces, and chip morphologies predicted by the FE model were consistent with the experimental results, which proved that the present FE model could effectively reflect the cutting process. In addition, a parametrical analysis was performed to investigate the effects of cutting depth, rake angle, and friction coefficient on the cutting force and chip formation, which found that, among these parameters, the friction coefficient had the greatest effect on cutting force.


2021 ◽  
Author(s):  
Tao Zhu ◽  
Ming Cai ◽  
Yadong Gong ◽  
Xingjun Gao ◽  
Ning Yu ◽  
...  

Abstract Based on the variation of the actual cutting depth during the grinding process, a 3D finite element (FE) simulation model for grinding nickel-based superalloy GH4169 with single abrasive was initially constructed. Then the morphological evolution of the grinding chips during the grinding process was studied. In addition, the effect of the single abrasive cutting depth and the grinding speed on chip morphology and segmentation frequency was investigated. Finally, experimental results with the same test parameters verify the finite element simulation results. The results showed that in the experimental grinding speed range, the sawtooth lamellar chip with the free surface being serrated and the contact surface being smooth due to the extrusion of the abrasive is easy to produce when grinding nickel-based superalloy GH4169. As the grinding speed increases, the chip morphology changes from a unitary lamellar chip to a continuous serrated chip, developing into a continuous ribbon chip. The chip segmentation frequency is mainly determined by grinding depth and grinding speed. To be specific, the smaller the grinding depth and the greater the grinding speed, the greater the chip formation frequency.


2021 ◽  
Vol 127 (23) ◽  
Author(s):  
Ramin Aghababaei ◽  
Mohammad Malekan ◽  
Michal Budzik

Wear ◽  
2021 ◽  
Vol 486-487 ◽  
pp. 204128
Author(s):  
Luke Osmond ◽  
David Curtis ◽  
Tom Slatter

2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110671
Author(s):  
Xiuhua Yuan ◽  
Chong Wang ◽  
Qun Sun ◽  
Ling Zhao

In the process of surface treatment, steel wire brush can not only efficiently remove surface contaminants, such as deteriorated paint film and rust, but also increase the adhesive strength. However, the associated brush mechanics of material removal is still not clear. In order to reveal the brush mechanics of material removal, this paper assumed the tip of steel wire were ball–cone shaped, constructed contact force model, and calculated the brush grinding force under different process conditions based on finite element approach. The simulated results show that the brush grinding can be changed from plastic plowing to chip formation when the penetration depth is increased to 10 μm, then changed from chip formation to plastic plowing when the inclination angle is increased to 30°, respectively. The simulated value of brush force rises with the increasing penetration depth and inclination angle, which was consistent with the experimentally obtained values, and the relative errors are within 9%. The quantity of material removal increases with the ascending of penetration depth, and decreases with the ascending of inclination angle. This paper provides guidance to understand the mechanics of material removal, predict the brush grinding force, and contribute well to an automatic grinding control application.


Sign in / Sign up

Export Citation Format

Share Document