scholarly journals 1513 Simulations of recrystallization microstructures using phase-field method and crystal plasticity finite element method

2005 ◽  
Vol 2005.18 (0) ◽  
pp. 875-876
Author(s):  
Tomohiro TAKAKI ◽  
Akinori YAMANAKA ◽  
Yoshihiro TOMITA
Author(s):  
Aladurthi L. N. Pramod ◽  
Hirshikesh ◽  
Sundararajan Natarajan ◽  
Ean Tat Ooi

In this paper, an adaptive phase-field scaled boundary finite element method for fracture in functionally graded material (FGM) is presented. The model accounts for spatial variation in the material and fracture properties. The quadtree decomposition is adopted for refinement, and the refinement is based on an error indicator evaluated directly from the solutions of the scaled boundary finite element method. This combination makes it a suitable choice to study fracture using the phase field method, as it reduces the mesh burden. A few standard benchmark numerical examples are solved to demonstrate the improvement in computational efficiency in terms of the number of degrees of freedom.


2019 ◽  
Vol 116 (6) ◽  
pp. 614
Author(s):  
Li Chang ◽  
Gao Jingxiang ◽  
Zhang Dacheng ◽  
Chen Zhengwei ◽  
Han Xing

Obtaining an accurate microscopic representation of the martensitic transformation process is key to realizing the best performance of materials and is of great significance in the field of material design. Due to the martensite phase transformation is rapidly, the current experimental is hard to capture all the information in the Martensite phase transformation process. Combining the phase-field method with the finite-element method, a model of martensitic transformation from a metastable state to a steady state is established. The law of a single martensite nucleus during martensitic transformation is accurately described. By changing the key materials that affect martensite transformation and the phase-field parameters, the effects of the parameters on the single martensitic nucleation process are obtained. This study provides an important theoretical basis for effectively revealing the essence of martensite transformation and can determine effective ways to influence martensite transformation, obtain the optimal parameters and improve the mechanical properties of such materials.


2015 ◽  
Vol 46 (11) ◽  
pp. 4834-4840 ◽  
Author(s):  
Jae-Ho Jung ◽  
Young-Sang Na ◽  
Kyung-Mox Cho ◽  
Dennis M. Dimiduk ◽  
Yoon Suk Choi

Sign in / Sign up

Export Citation Format

Share Document