Simulation of Dynamic Recrystallization for Mg/LPSO Alloys Based on Multi-phase-field and Dislocation-based Crystal Plasticity Theories

2016 ◽  
Vol 2016.29 (0) ◽  
pp. 020
Author(s):  
Sho KUJIRAI ◽  
Kantaro INOUE ◽  
Kazuyuki SHIZAWA
2016 ◽  
Vol 725 ◽  
pp. 243-248
Author(s):  
Yuichi Kimura ◽  
Sho Kujirai ◽  
Ryo Ueta ◽  
Kazuyuki Shizawa

Magnesium alloy with Long-Period Stacking Ordered Structure (LPSO) and α-Mg (ordinary HCP structure) phase is expected for a new structural material due to its excellent mechanical properties. Its materials strengthening arises from the kink band formation in LPSO phase and the grain refinement of α-Mg phase in the vicinity of LPSO phase because of recrystallization. In the present study, a multiscale and multiphysics computation for the dynamic recrystallization in α-Mg phase is carried out by coupling the dislocation-based crystal plasticity model for HCP crystals proposed previously by the authors with the multi-phase field model through dislocation density. In the present model, not only the environmental temperature-dependences of nucleation and nucleus growth but also a pinning effect of boundary migration of recrystallized grain boundary owing to existence and influence of additive elements are newly taken into account. Furthermore, grain size behaviors of recrystallized nuclei are investigated for various volume fractions of additive element and ratios of grain boundary segregation.


2015 ◽  
Vol 651-653 ◽  
pp. 570-574 ◽  
Author(s):  
Akinori Yamanaka

The plastic deformation behavior of dual-phase (DP) steel is strongly affected by its underlying three-dimensional (3D) microstructural factors such as spatial distribution and morphology of ferrite and martensite phases. In this paper, we present a coupled simulation method by the multi-phase-field (MPF) model and the crystal plasticity fast Fourier transformation (CPFFT) model to investigate the 3D microstructure-dependent plastic deformation behavior of DP steel. The MPF model is employed to generate a 3D digital image of DP microstructure, which is utilized to create a 3D representative volume element (RVE). Furthermore, the CPFFT simulation of tensile deformation of DP steel is performed using the 3D RVE. Through the simulations, we demonstrate the stress and strain partitioning behaviors in DP steel depending on the 3D morphology of DP microstructure can be investigated consistently.


Sign in / Sign up

Export Citation Format

Share Document