0309 Detached eddy simulation of high Reynolds number turbulent boundary layer with uniform blowing

2013 ◽  
Vol 2013 (0) ◽  
pp. _0309-01_-_0309-02_
Author(s):  
Ryosuke KIDOGAWA ◽  
Yukinori KAMETANI ◽  
Koji FUKAGATA
2004 ◽  
Author(s):  
Brendan F. Perkins

In order to better understand boundary layer turbulence at high Reynolds number, the fluctuating wall pressure was measured within the turbulent boundary layer that forms over the salt playa of Utah’s west desert. Pressure measurements simultaneously acquired from an array of nine microphones were analyzed and interpreted. The wall pressure intensity was computed and compared with low Reynolds number data. This analysis indicated that the variance in wall pressure increases logarithmically with Reynolds number. Computed autocorrelations provide evidence for a hierarchy of surface pressure producing scales. Space-time correlations are used to compute broadband convection velocities. The convection velocity data indicate an increasing value for larger sensor separations. To the author’s knowledge, the pressure measurements are the highest Reynolds number, well resolved measurements of fluctuating surface pressure to date.


1997 ◽  
Vol 336 ◽  
pp. 151-182 ◽  
Author(s):  
BRANKO KOSOVIĆ

It has been recognized that the subgrid-scale (SGS) parameterization represents a critical component of a successful large-eddy simulation (LES). Commonly used linear SGS models produce erroneous mean velocity profiles in LES of high-Reynolds-number boundary layer flows. Although recently proposed approaches to solving this problem have resulted in significant improvements, questions about the true nature of the SGS problem in shear-driven high-Reynolds-number flows remain open.We argue that the SGS models must capture inertial transfer effects including backscatter of energy as well as its redistribution among the normal SGS stress components. These effects are the consequence of nonlinear interactions and anisotropy. In our modelling procedure we adopt a phenomenological approach whereby the SGS stresses are related to the resolved velocity gradients. We show that since the SGS stress tensor is not frame indifferent a more general nonlinear model can be applied to the SGS parameterization. We develop a nonlinear SGS model capable of reproducing the effects of SGS anisotropy characteristic for shear-driven boundary layers. The results obtained using the nonlinear model for the LES of a neutral shear-driven atmospheric boundary layer show a significant improvement in prediction of the non-dimensional shear and low-order statistics compared to the linear Smagorinsky-type models. These results also demonstrate a profound effect of the SGS model on the flow structures.


Sign in / Sign up

Export Citation Format

Share Document